

ASX Announcement

ASX: GML

22 January 2026

NEW GOLD DISCOVERY AT HAFLINGER

DRILLING INTERSECTS 52m @ 1.4g/t Au, INCLUDING 12m @ 3.1g/t Au

HIGHLIGHTS

- Drilling on the Celia shear structure at the Haflinger gold target within the Yandal Gold Project in WA has yielded a significant new discovery:
 - 52m @ 1.4g/t Au from 64m, including 12m @ 3.1g/t Au (MPAC262)
- This hole was drilled south of the two bottom-of-hole results reported earlier this week, both of which 'clipped' the targeted mafic-intermediate contact structure:¹
 - 2m @ 3.4g/t Au from 148m to BOH, within a broader 6m @ 1.4g/t Au from 144m (MPAC187) – MPAC262 is 500m south of this hole.
 - 4m @ 2.9g/t Au from 148m within a broader 16m @ 1.0g/t Au from 136m (MPAC231) – MPAC262 is 200m south of this hole.
- The mineralisation occurs in a highly favourable structural setting, where the mafic-intermediate contact flexures to the south-east, creating a region of intense deformation (see Figure 1).
- These three holes now define the mineralised Haflinger trend over a minimum ~500m, with the geology becoming more favourable as drilling moves southwards towards the structural flexure.
- Gateway remains well capitalised to undertake planned 2026 exploration, having approximately \$13.1m (cash and liquid ASX securities) at the end of the September quarter, as well as having completed an additional \$22.5m capital raising post September quarter.

Introduction

Gateway Mining Limited (ASX: GML) (**Gateway** or **Company**) is pleased to advise that it has discovered a significant new zone of gold mineralisation from recent aircore drilling at the Haflinger gold target, within its 100%-owned Yandal Gold Project in Western Australia.

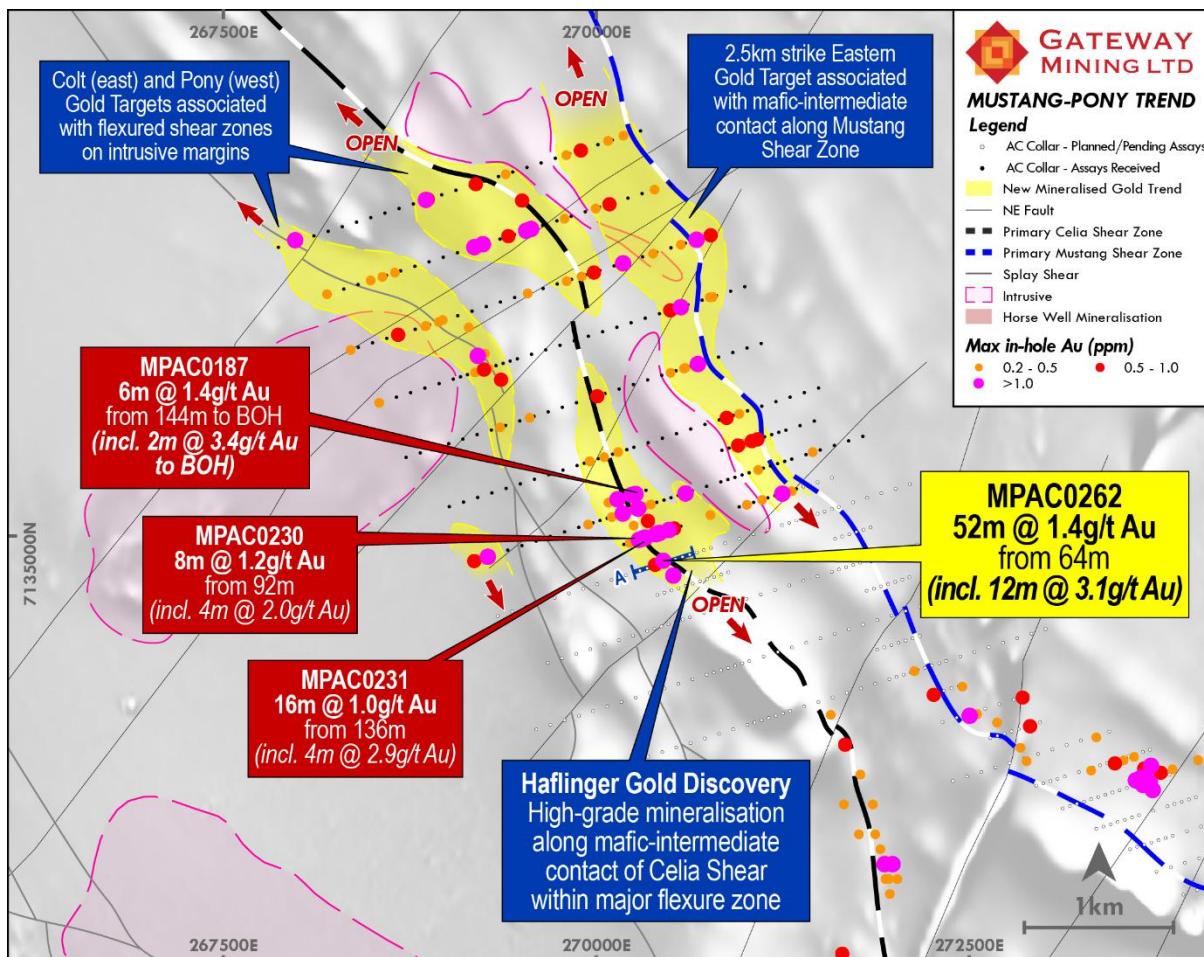
Management Comment

Gateway's Executive Chairman, Mr Andrew Bray, said: *The result in MPAC262 of 52m @ 1.4g/t Au, including 12m @ 3.1g/t Au, is an outstanding new discovery from the aircore drilling. Most importantly, this isn't an isolated result – it builds substantially on the two BOH results we released earlier in the week, both of which returned high-grade gold within the key mafic-intermediate contact structure.*

The 2m @ 3.4g/t Au in MPAC187¹ was intersected in fresh rock in the final two metres of the hole before blade refusal. That result is 500m to the north of today's result. MPAC231, which sits in between those two holes, also 'clipped' the key structure, returning 4m @ 2.9g/t Au from 148m in fresh rock (within a broader zone of 16m @ 1.0g/t Au)¹. With today's result, the structure has now been intersected over a strike length spanning ~500m and it remains open to the south.

Excitingly, the geology becomes more favourable as we move southwards. This gold mineralisation is located in a highly promising geological setting where the mafic-intermediate contact flexures to the south-east, creating significant complexity and a favourable location for gold deposition due to enhanced fluid flow and trapping mechanisms at the 'bend'. The next several lines of aircore drilling will drill closer to (and through) this flexure.

Haflinger is clearly shaping up as a very promising high-grade gold structure. Aircore drilling will commence very shortly with two rigs on site. One rig will have the sole focus of increasing drill density around this trend, while the second rig will continue systematically following the eastern Mustang shear southwards. The Company will then undertake follow-up RC drilling."


¹Refer to ASX announcement dated 19 January 2026.

Yandal Gold Project

Drilling along the Celia Shear structure has yielded a new gold discovery at Haflinger:

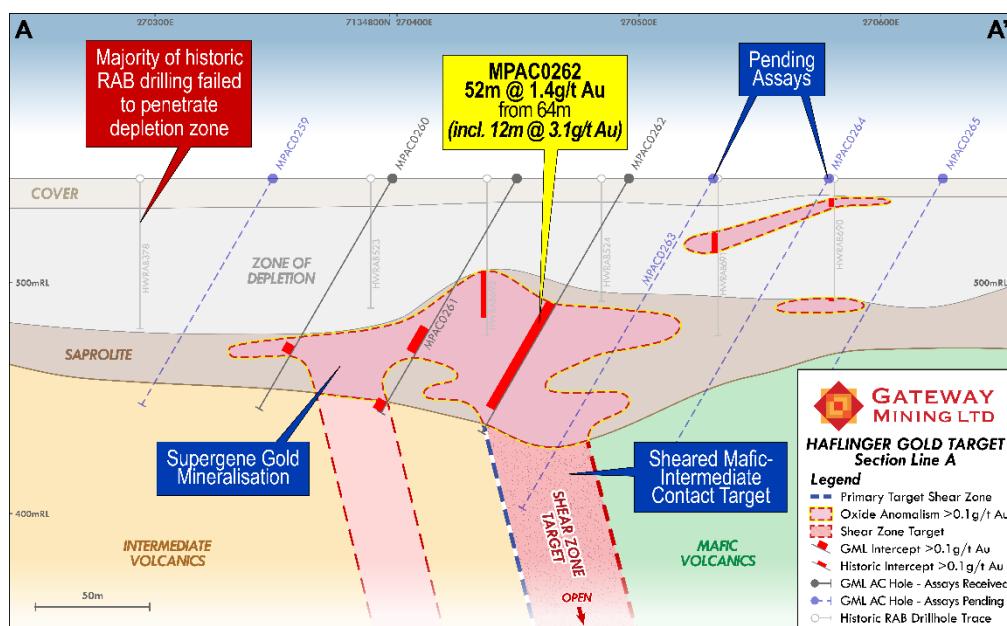
- **MPAC262: 52m @ 1.4g/t Au, including 12m @ 3.1g/t Au from 64m**

Mineralisation at Haflinger is located along the contact between mafic and intermediate lithologies within the Celia Shear Zone (see Figure 2). Southward, the sheared contact flexures eastward resulting in a series of dilationary structures that have allowed for localised enhanced fluid flow. Interpretation of magnetic imagery shows that the flexure zone that hosts Haflinger continues southward for a least a further 400m, with the next several lines of drilling planned to intersect this structural zone.

Figure 1: Topographic map highlighting aircore intercepts (Au ppm) received to date, in relation to major shear zones and planned drilling across the Mustang-Pony Trend.

Historical rotary airblast drilling across the Haflinger Prospect largely failed to penetrate transported cover and the zone of depletion, rendering previous exploration efforts ineffective at testing the mineralised structures (see Figure 2).

Along strike 200m to the south of drillhole MPAC0262, major northeast-trending brittle structures intersect the target shear zone. As seen elsewhere across the Yandal Project, the intersection of such NE-structures with a mineralised shear zone results in an increased depth of weathering and enhanced supergene enrichment (i.e. thicker oxide mineralisation).

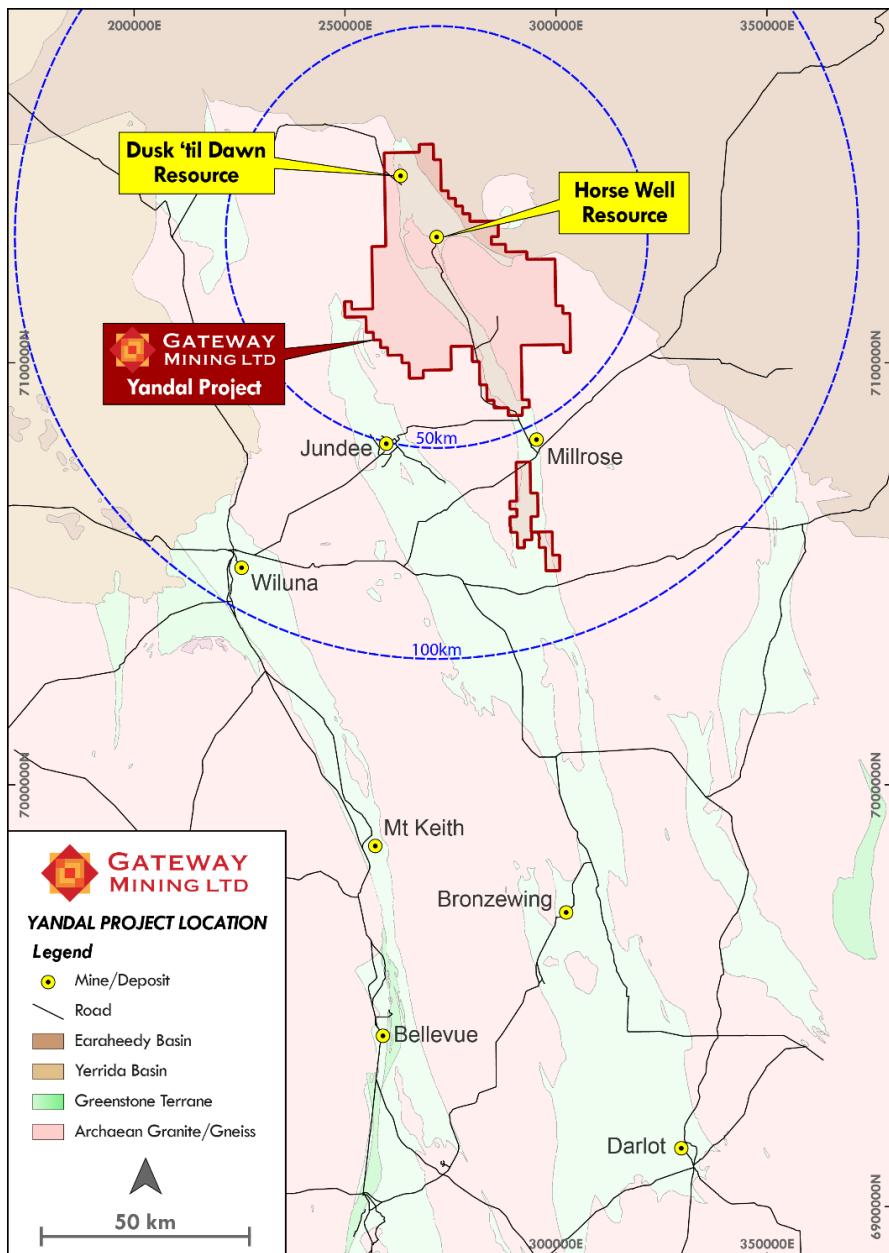

The Company is expecting this area to have the most impressive mineralisation within the target area.

Aircore drilling by Gateway has been far more effective at penetrating into fresh rock and has successfully defined primary mineralisation, hosted within the mafic-intermediate contact, over a minimum strike length of 500m. Aircore drilling results at Haflinger announced previously by the Company highlight the underlying sheared contact as a high-grade target:²

- MPAC187: 2m @ 3.4g/t Au from 148m to BOH, within a broader 6m @ 1.4g/t Au from 144m
- MPAC231: 4m @ 2.9g/t Au from 148m within a broader 16m @ 1.0g/t Au from 136m

MPAC262 is located 500m south of MPAC187 and 200m south of MPAC231, showing consistent ~3.0g/t mineralisation over a minimum strike length of 500m.

Drill results are pending for completed aircore hole MPAC263. This hole was drilled stepping back from MPAC262 and ended within the highly-sheared target structure. Assay results, once received, will be released to the market in due course.


Figure 2: Cross Section A extensive supergene mineralisation above the target sheared mafic-intermediate contact.

Upcoming Drilling

Aircore drilling will recommence in the coming days with two rigs on site. The first rig will solely focus on infill drilling along the Haflinger trend. The increased drill density is expected to accurately delineate the key mafic-intermediate contact shear zone. These targets will then be followed up by RC drilling.

The second rig will drill systematically southwards along the Mustang Shear, with the aim of approximately mapping the mafic-intermediate contact. Follow-up, closer spaced aircore is expected to then accurately define the key contact zone in preparation for subsequent RC drilling.

²Refer to ASX announcement dated 19 January 2026.

Figure 3: GML Yandal Project area in relation to known gold mines, road infrastructure and regional greenstone terrains (light green).

This release has been authorised by:

Andrew Bray
Executive Chairman

Investors
Andrew Bray
Executive Chairman
T: 08 6383 9969

Media
Nicholas Read
Read Corporate
T: 08 9388 1474

or

Kar Chua
Company Secretary
T: 02 8316 3998

[Click here to subscribe to investor updates](#)

Follow us on:

LinkedIn: [@gateway-mining](#)

Twitter: [@gateway_mining](#)

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr Richard Pugh who is Gateway Mining Limited's Chief Executive Officer and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources has been extracted from various Gateway ASX announcements and are available to view on the Company's website at www.gatewaymining.com.au or through the ASX website at www.asx.com.au (using ticker code "GML")

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the Mineral Resources in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward Looking Statement

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (**Forward-Looking Statements**). Forward-Looking Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also Forward Looking Statements.

Persons reading this announcement are cautioned that such statements are only predictions, and that actual future results or performance may be materially different. Forward-Looking Statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward-Looking Statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

No representation or warranty, express or implied, is made by Gateway that any Forward-Looking Statement will be achieved or proved to be correct. Further, Gateway disclaims any intent or obligation to update or revise any Forward-Looking Statement whether as a result of new information, estimates or options, future events or results or otherwise, unless required to do so by law.

APPENDIX A: AC Table of Significant Gold Intercepts

Hole ID	Hole Details							Intercept				
	Coordinates (MGA94 Zone 51)											
	Easting (m)	Northing (m)	RL (m)	Dip (°)	Azimuth (°)	Max Depth (m)	Hole Type	From (m)	To (m)	Interval (m)	Grade (Au g/t)	Interval
MPAC0260	270397	7134803	545	-60	250	115	AC	84	88	4	0.2	4 metres @ 0.2g/t Au from 84 metres
MPAC0261	270449	7134817	545	-60	250	117	AC	76	88	12	0.4	12 metres @ 0.4g/t Au from 76 metres
								112	117	5	0.3	5 metres @ 0.3g/t Au from 112 metres
MPAC0262	270495	7134833	545	-60	250	127	AC	64	116	52	1.4	52 metres @ 1.4g/t Au from 64 metres (incl. 12 metres @ 3.1g/t Au)
MPAC0187*	270332	7135305	545	-60	250	150	AC	84	88	4	0.1	4 metres @ 0.1g/t Au from 84 metres
								128	132	4	0.1	4 metres @ 0.1g/t Au from 128 metres
								144	150	6	1.4	6 metres @ 1.4g/t Au from 144 metres to EOH (incl. 2 metres @ 3.4g/t Au to EOH)
MPAC230*	270328	7134988	545	-60	250	152	AC	60	76	16	0.4	16 metres @ 0.4g/t Au from 60 metres (incl. 4 metres @ 0.7g/t Au)
								92	100	8	1.2	8 metres @ 1.2g/t Au from 92 metres (incl. 4 metres @ 2g/t Au)
								140	144	4	0.3	4 metres @ 0.3g/t Au from 140 metres
MPAC231*	270376	7135004	545	-60	250	165	AC	108	112	4	0.2	4 metres @ 0.2g/t Au from 108 metres
								136	152	16	1	16 metres @ 1g/t Au from 136 metres (incl. 4 metres @ 2.9g/t Au)

*Previously released results (please refer to ASX announcement 19 January 2026)

APPENDIX B: JORC TABLE 1 – YANDAL PROJECT

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> All drilling (prefix MPAC) and sampling was undertaken in an industry standard manner. AC hole samples were collected on a 1 metre basis from a gravity-fed rotary splitter below the drill rig cyclone. For each metre drilled, 'A-bag' splits (roughly 10% of the total sample) was collected directly from the splitter chute in pre-numbered calico bags, with the remaining bulk sample being collected in a bucket below the splitter and ground dumped in rows of 20 metres. Each ground-dumped metre was scoop sampled using and placed in a pre-numbered SKA***** prefixed calico bag in 4 metre composites. Four metre composite samples ranged in weight from 2.5-3kg. The 1m A-bag splits were tied and stored in water-proof green bags at the drill pad for use in the case of re-splitting, additional QAQC analysis, or if the at-rig geologist determined 1m samples are to be preferentially sent to the lab instead of SKA***** 4m composites. When 1m A-bag splits were submitted to the laboratory, an SKR***** prefix calico bag was used. Certified reference material was inserted into the sample sequence at a 1:50 ratio (i.e., every SKA***00 and SKA***50 calico bag). Duplicate samples were collected at a 1:50 ratio (i.e., every SKA***25 and SKA***75) to give an overall QAQC ratio of 1:25 for all sampling.

Criteria	JORC Code explanation	Commentary
Drilling techniques	<ul style="list-style-type: none"> Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	<ul style="list-style-type: none"> Aircore drilling utilising the Bostech Aircore Core System (85- 87mm). Rotary polycrystalline diamond composite (PDC) drill bits were utilized at the top of fresh rock, or where ground was too hard for the standard aircore bit to penetrate. Rotary hammer drill bits were used sparingly where veining prevented both the PDC and standard AC drill bits from penetrating.
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> AC samples were visually assessed for recovery. Samples were considered representative with generally good recovery. Sample recovery was recorded per metre drilled. Samples were dry. Sample condition is recorded per metre drilled. No sample bias is observed.
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> Aircore holes were logged qualitatively and quantitatively on a 1m basis. Qualitative: lithology, alteration, structure. Quantitative: vein percentage; mineralisation (sulphide) percentage. All holes were logged for the entire length of hole. All drilled metres for each AC hole were chipped, archived and photographed.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	<ul style="list-style-type: none"> AC chips were rotary split, sampled dry and recorded at the time of logging.

Criteria	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<ul style="list-style-type: none"> OREAS certified reference material (CRM) was inserted at a ratio of 1:50 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. Field Duplicates and CRMs were submitted to the lab using unique Sample IDs at a ratio of 1:50 throughout sampling. The entire 2.5-3kg AC 4m composite or 2.5-3kg 1m split was sent to ALS laboratory in Perth. All samples were analysed for gold via a 50g fire assay with an ICP-AES finish (method code Au-ICP22). All bottom of hole samples were submitted for full multi element analysis – four acid digest with ICP-MS finish (method code: ME-MS61). The sample size was appropriate for the grain size of sampled material.
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	<ul style="list-style-type: none"> For Fire Assay, all samples were sorted, dried at 105°C and weighed prior to crushing to 2mm. Crushed samples were then split and pulverised to 75µm, with a QC specification of ensuring >85% passing < 75µm. 50g of pulverised sample was then analysed for Au by fire assay and ICP-AES (low-grade) or gravimetric (ore-grade) finish. Four acid digest for full multi element analysis is categorised as a “near total” digestion method. QA samples were inserted at a combined ratio of 1:25 throughout. Field duplicates were collected at a 1:50 ratio. OREAS certified reference material (CRM) was inserted at a ratio of 1:50. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Magnetic Susceptibility measurements were collected at one metre intervals utilising a KT-10 instrument. At the start of each hole, the KT-10 instrument was calibrated/checked against a reference material before collecting 1m interval data from sample piles. A handheld Olympus Vanta XRF instrument was utilised to aid the at-rig geologist determining downhole lithologies. The instrument was calibrated at the start of each analysis session, with a QC reading taken on alternating Certified Reference Materials (Blank and OREAS45d) at a ratio of 1:20 samples. Handheld XRF readings were taken on pulverized material from dry bottom of hole samples systematically, and from dry samples throughout a hole where the geologist determined geochemical data was necessary to determine lithology.
<i>Verification of sampling and assaying</i>	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Logging and sampling were recorded directly into LogChief, utilising lookup tables and in-file validations, on a Toughbook by a geologist at the rig. Logs, handheld XRF geochemical data, Magnetic Susceptibility data and sampling were imported daily into Micromine for further validation and geological confirmation. When received, assay results were plotted on section and verified against neighbouring drill holes. From time to time, assays will be repeated if they fail company QAQC protocols. All sampling was routinely inspected by senior geological staff. Significant intersections were inspected by senior geological staff and Gateway corporate staff. Data was validated daily by the Gateway Database Administrator, with import validation protocols in place. Data was exported daily to Mitchell River Group and externally validated and imported to the SQL database.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> • No adjustments have been made to assay data. • Data is managed and hosted by Mitchell River Group.
<i>Location of data points</i>	<ul style="list-style-type: none"> • <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> • Drill collars were surveyed using a GARMIN GPSMap64 with expected relative accuracy of approximately 3m. • Holes are located in MGA Zone 51. • RLs were assigned a nominal value of 545m during drilling and corrected during data import by draping on the DGPS-generated surface DTM. Data points for creation of the surface topography were collected by DownUnder Surveys in 2022 on a 50m grid spacing across the entire Horse Well Region. • Collar locations are to be updated at a later date by DGPS.
<i>Data spacing and distribution</i>	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> • Aircore holes have been designed on a 100 metre (East-West) by 400 metre (North-South) grid spacing. In some instances, this spacing has been reduced as there is already a good handle on the mafic-intermediate contact (based on recently collected historic BOH sampling). • Each drill hole was positioned to an Azimuth of 250 degrees at a dip of -60 degrees and drilled to blade refusal. • 1 metre split samples were collected from the rotary splitter located directly below the drill rig cyclone and stored at the drill pad. • 4 metre composite samples were collected throughout each hole.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> Significant intercepts were based on 4 metre composites grading greater than 0.1g/t Au. However, where samples were taken at or near bottom of hole, significant intercepts were based on sample intervals less than 4 metres (either single metres BOH splits or 2 or 3 metre composite samples), depending on the final depth. These intercepts were still deemed significant if they graded greater than 0.1g/t Au
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> Further drilling is required to fully evaluate the initial aircore drilling results. Drilling has been conducted perpendicular to interpreted regional structures. Drilling has been spaced at 100 metres (East-West) to ensure adequate coverage across regional structures. The orientation of drilling is not considered to introduce a sampling bias.
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<p>Gateway Drilling:</p> <ul style="list-style-type: none"> Sampling was recorded in both hardcopy and digital format. These were collected by company personnel and delivered directly to the laboratory via GML personnel. <p>Pre-Gateway Drilling:</p> <ul style="list-style-type: none"> The data was originally maintained by Doray Minerals Ltd.
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> Sampling procedures throughout the drilling process were monitored and supervised by senior geological staff. Historic data has been validated by the Mitchell River Group and is deemed accurate and precise.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> • All results reported by the Laboratory and data exported by Gateway Mining Ltd is externally validated by the Mitchell River Group prior to importing into the database. • Monthly QAQC reports and recommendations are generated for all drilling, geochemical and assay data by Mitchell River Group.

Section 2: Reporting of Exploration Results

(Criteria listed in section 1, also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> • The Mustang-Pony trend is located on 100% owned Gateway tenure (tenement ID's) E69/1772 and E69/2765. • MW Royalty Co Pty Ltd holds a 1% gross revenue royalty over the above tenure.
Exploration done by other parties	<ul style="list-style-type: none"> • Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> • Exploration prior to Alloy Resources in the region was minimal and limited to shallow RAB and air-core drilling completed in the mid – 1990s, all of which had been sampled, assayed, and logged and records held by the Company. This early work, including aeromagnetic data interpretation, was focused on gold and provided anomalous samples which was the focus of this period of exploration.
Geology	<ul style="list-style-type: none"> • Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> • Archaean aged gold prospects with common host rocks and structures related to mesothermal gold mineralisation as found throughout the Yilgarn Craton of Western Australia

Criteria	JORC Code explanation	Commentary
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<ul style="list-style-type: none"> Refer to tabulations in the body of this announcement. Gateway drillhole details with assays >0.1g/t Au over 4 metre composite and 1 metre split samples are summarised in Appendix A. Historic intercepts across the project have been released in numerous previous ASX releases by GML (for example, please refer to ASX announcement dated 26th August 2025 16 December 2025 and 19 January 2026).
Data aggregation methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	<ul style="list-style-type: none"> No top-cuts have been applied when reporting results. The primary gold determination is reported where any secondary assaying does not differ significantly from the primary. The AC intervals are taken as values >0.1g/t Au with maximum internal dilution of 4 metres. No metal equivalent values are used for reporting exploration results. No diamond drilling results are reported in this announcement.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> Further drilling is required to fully evaluate these initial AC drill intercepts. AC drilling has been conducted perpendicular to regional structures. AC drilling has been spaced at 50 metres (East-West) across the Haflinger prospect to ensure adequate coverage across regional structures. Downhole AC intercept lengths are reported.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Please refer to the main body of the announcement.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> A summary of exploration results are contained within Appendix A.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> Titanium (Ti)/Zirconium (Zr) ratios were calculated from the work outlined by J.A Hallberg from the Journal of Geochemical Exploration (A geochemical aid to igneous rock type identification in deeply weathered terrain – Journal of Geochemical Exploration, Volume 20, Issue 1, February 1984, Pages 1-8). The method is based on Ti/Zr ratio which is little affected either by primary alteration or weathering and adequately defines compositional fields for major igneous rock types. For volcanic rocks Ti/Zr ratios are rhyolite <4< dacite <12< andesite <60< basalt (Appendix B). Ultramafic rocks cannot be discriminated from mafic rocks by Ti/Zr ratio but are generally distinguished by high Cr. These have not been highlighted in this announcement, but rather the bulk Ti/Zr ratios for mapping the mafic-intermediate contacts.

Criteria	JORC Code explanation	Commentary
Further work	<ul style="list-style-type: none"> <i>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</i> <i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i> 	<ul style="list-style-type: none"> Further aircore and RC drilling to further define and test this emerging gold system.