

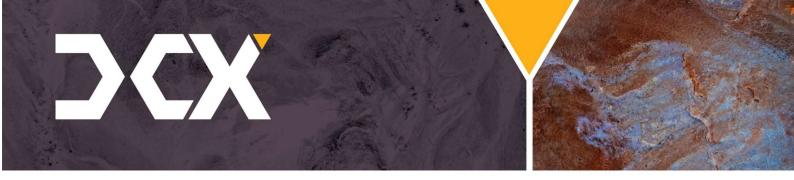
9 February 2023

Spartan Prospect delivers bedrock gold at Edjudina

Gateway Mining Limited (**Company**) provides the attached announcement by DiscovEx Resources Limited (ASX:DCX) (**DCX**).

The announcement details drilling results intersecting bedrock gold at the highly encouraging Spartan prospect. Spartan is part of the 80/20 joint venture between DCX and the Company over E39/1765 and E39/1882, located at Edjudina in Western Australia (**Tenements**) (**Joint Venture**). Under the terms of the Joint Venture, following the Company's sale of an 80% interest in the Tenements, the Company has a 20% free carried interest over the Tenements up until a decision to mine over the Tenements is made. The Company also owns a 1.5% gross revenue royalty over the Tenements (excluding iron ore).

This released has been authorised by:


Mark Cossom Managing Director

For and on behalf of GATEWAY MINING LIMITED

InvestorsMediaMark CossomNicholas ReadManaging DirectorRead CorporateT: 08 6383 9969T: 08 9388 1474orKar ChuaCompany SecretaryT: 02 8316 3998

Click here to subscribe to investor updates

Follow us on LinkedIn and/or Twitter @gateway_mining

ASX ANNOUNCEMENT – DISCOVEX RESOURCES LIMITED 09/02/2023

Spartan delivers bedrock gold Single metre results up to 4.8g/t Au

- Composite results returned from 151 aircore (AC) holes (phase 2 reconnaissance drilling).
- Single metre splits returned from phase 1 composite assays.
- Three high-priority bedrock gold drill targets generated.
- Significant intersections within weathered bedrock include:
 - o 1m@3.42g/t Au from 82m within 4m@1.24g/t Au from 82m (SPAC016),
 - 1m@1.35g/t Au from 62m EOH (SPAC128),
 - 1m@1.06g/t Au from 74m (SPAC026),
 - 1m@0.63g/t Au from 83m EOH within 4m@0.42g/t Au from 80m (SPAC150),
 - 9m@0.18g/t Au from 60m EOH (SPAC130).
- Significant intersections within transported overburden include:
 - o 1m@4.82g/t Au from 35m within 8m@1.64g/t Au from 29m (SPAC017),
 - o 1m@2.00g/t Au from 32m within 6m@1.24g/t Au from 29m (SPAC029),
 - 8m@0.58g/t Au from 28m (SPAC135),
 - 4m@0.75g/t Au from 28m (SPAC136).

Putting the Explore back into Modern Exploration

DiscovEx Resources Limited (ASX: DCX, DiscovEx or the Company) is pleased to announce that all composite assay results have been returned from a total of 188 AC holes completed at the Spartan Prospect, part of an 80:20 joint venture with Gateway Mining Limited (ASX:GML). The first pass

reconnaissance drilling was completed in two phases, consisting of 37 holes within phase one (*previously reported on 24th Oct 2022 "Bedrock and transported gold intersected at Spartan"*) and 151 holes in phase two. Both phases were designed to test down to the fresh bedrock interface beneath and along strike of a 1.3km long +50ppb gold in soil anomaly (*previously reported on 21st July 2022 "Infill Surface Sampling upgrades Spartan Anomaly"*). Single metre re-splits have also been received from anomalous (>0.1g/t Au) composite samples taken as part of phase one drilling.

Results have confirmed bedrock gold mineralisation has been intersected with significant results of **4m@1.24g/t Au** from 82m, including **1m@3.42g/t Au** from 82m (SPAC016), **1m@1.35g/t Au** from 62m (SPAC128) and **1m@1.06g/t Au** from 74m (SPAC026). The elevated bedrock results have highlighted three high priority target areas including two coherent "structural"zones of anomalous (>0.1g/t Au) bedrock gold defined over strike lengths of ~650m.

Together with the bedrock mineralisation, significant gold has also been intersected within transported overburden with best results of **8m@1.64g/t Au** from 29m including **4m@2.82g/t Au** from 32m (SPAC017).

The relationship between the significant accumulation of gold in transported cover and the bedrock gold at Spartan has not yet been resolved, however the identification of gold within sheared, altered bedrock is encouraging and provides targets for further follow up. Confirmation of the extensive and significant accumulation of near surface gold at Spartan and the bedrock mineralisation beneath it highlights the broader prospectivity of the project area.

DCX Managing Director, Toby Wellman, commented:

"There remains a great deal to unpack at Edjudina with regards to the relationship between transported and bedrock gold. One thing however remains certain, and that is there is a significant amount of metal contained in the regolith. Where this is being remobilised from (both chemically and/or mechanically) remains unclear but the amount of gold intersected to date would certainly indicate it is being redistributed from a significant source.

With three bedrock gold targets defined, the exploration team is looking forward to the next phase of work at Edjudina, including extensional drilling in and around the defined mineralisation."

AIRCORE DRILLING

A total of 188 aircore holes (both phase 1 and phase 2) were completed at the Spartan Prospect (**Figure** 1), for a total of 12,906m with drilling aimed at testing beneath and adjacent to the footprint of a high priority surface gold anomaly. Drilling was completed on 200m spaced lines, traversing the original soil anomaly on 100m and 50m centres to ensure sufficient coverage was achieved. Additional holes were also completed between the Spartan anomaly and the Falcon and Hercules anomalies (located approx. 4km to the east – **Figure 1**) to test a paleo-topographic high modelled from drill information.

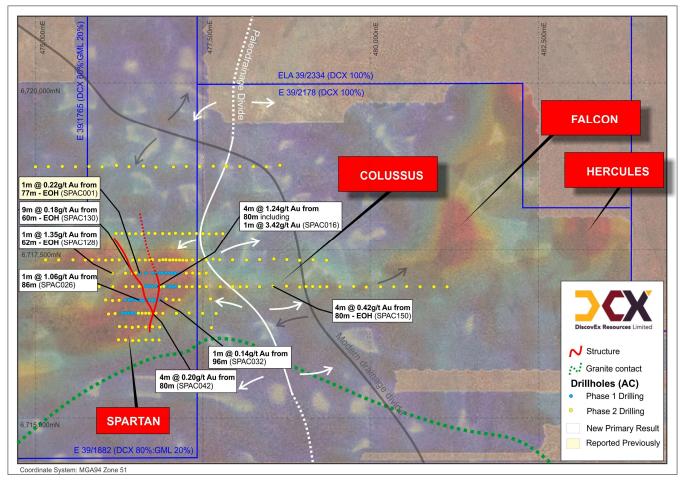


Figure 1: Drill hole locations and significant bedrock assays shown from the Spartan Prospect. Contoured image represents elevated gold in soil results up to 544ppb Au (previously reported on 21st July 2022 "Infill Surface Sampling Upgrades Spartan Anomaly").

Significant bedrock and transported intersections (>0.1g/t Au) are listed below.

- Weathered bedrock mineralisation:
 - o 1m@3.42g/t Au from 82m within 4m@1.24g/t Au from 82m (SPAC016)
 - o 1m@1.35g/t Au from 62m EOH (SPAC128),
 - o 1m@1.06g/t Au from 74m (SPAC026),
 - o 1m@0.63g/t Au from 83m EOH within 4m@0.42g/t Au from 80m (SPAC150),
 - o 2m@0.24g/t Au from 60m EOH (SPAC042),
 - 9m@0.18g/t Au from 60m EOH (SPAC130),
 - 4m@0.11g/t Au from 72m (SPAC096).

- Transported mineralisation:
 - o 1m@4.82g/t Au from 35m within 8m@1.64g/t Au from 29m (SPAC017),
 - o 1m@2.00g/t Au from 32m within 6m@1.24g/t Au from 29m (SPAC029),
 - o 4m@0.94g/t Au from 32m within 8m@0.58g/t Au from 28m (SPAC135),
 - o 4m@0.75g/t Au from 28m (SPAC136),
 - o 4m@0.24g/t Au from 24m (SPAC057),
 - o 4m@0.18g/t Au from 36m (SPAC077),
 - 4m@0.20g/t Au from 28m (SPAC094).
 - 4m@0.12g/t Au from 40m (SPAC134).

Drill results have returned anomalous transported gold within the overlying sands and clays, whilst more significantly confirmed bedrock gold mineralisation within weathered monzogranite and amphibolite. Three priority targets (Spartan West, Spartan East and Colossus – **Figure 1**) will remain the focus of future exploration drilling, given these targets display elevated gold results close to the bottom of hole and also show scale potential. Bottom of hole mineralisation is particularly encouraging as it implies potential for primary gold mineralisation in the fresh rock below.

TARGETS

Spartan West and East

These two target areas are located beneath the original Spartan soil anomaly, and both have been defined over strike lengths of approximately 650m. The western trend (oriented north-west) is centred on an amphibolite unit with significant intersections returned including **1m@1.35g/t Au** (SPAC128) and **9m@0.18g/t Au** (SPAC130). Both intersections were anomalous to the end of hole, sheared and are spatially associated with an interpreted fold closure of the amphibolite (**Figure 2**). This unit also has an elevated copper association up to 0.13% Cu (*previously reported on 24th Oct 2022 "Bedrock and transported gold intersected at Spartan"*). The geological and structural complexity of the target area is encouraging and given the mineralisation is present close to the fresh rock interface, suggests this has a higher potential of being proximal to a primary source rather than being supergene related.

The eastern trend (oriented north-south) returned significant bedrock results including **4m@1.24g/t Au** (SPAC016) immediately below the best transported result of **4m@2.82g/t Au** (SPAC017) (**Figures 2** and **3**). Both results are proximal to each other, however it is uncertain whether the two are genetically related. The abundance of gold within the transported soil profile is significant and although this is not indicative that a mineralised source is located nearby, the presence of gold within bedrock lithologies immediately below this transported mineralisation is highly encouraging.

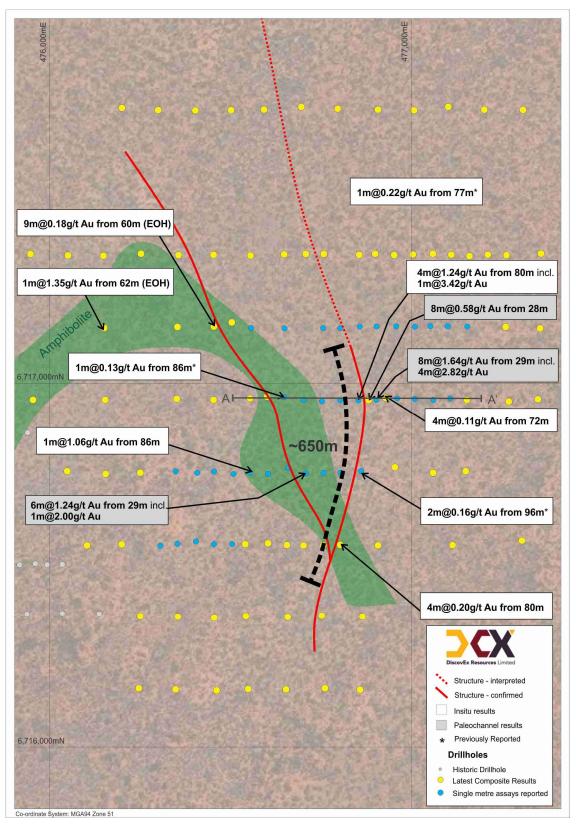


Figure 2: Plan view of significant intersections from the Spartan Prospect (both paleo-channel and bedrock intersections).

ブ @discovex

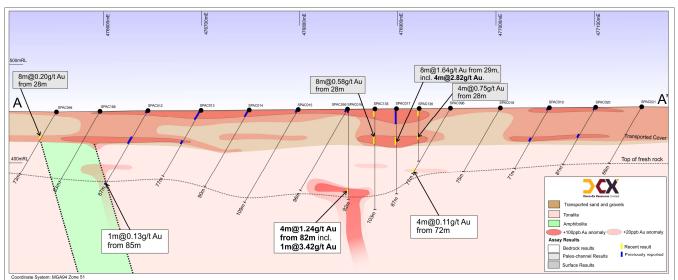


Figure 3: Cross-section view of 6716950mN

Colussus

The Colussus target was defined as part of regional drilling completed between the Spartan and Falcon surface anomalies (**Figure 1**). Drill holes were proposed within this area to test an interpreted paleodrainage divide, identified from 3D modelling of the base of transported cover. Analysis of this depth horizon indicated alluvial cover was shallowing to the east, with an up-slope paleo-topographic high located somewhere east of Spartan. The implication of this was that if a paleo-ridge was located east of the Spartan anomaly, then this higher elevation may represent the source of transported gold present within the overburden at Spartan.

Results of this drill traverse did indeed locate a paleo-topographic high between the Spartan and Falcon anomalies (**Figure 1**) and more importantly returned elevated gold results within weathered bedrock. This included a bottom of hole interval of **4m@0.42g/t Au** from 80m (SPAC150). The result was returned within an area of broader spaced drill coverage (200 x 400m) and is open to the south. Given this result may represent the source of the surface anomalies not only at Spartan but also at Falcon and Hercules, additional AC drilling has been proposed to further define its lateral and along strike extent.

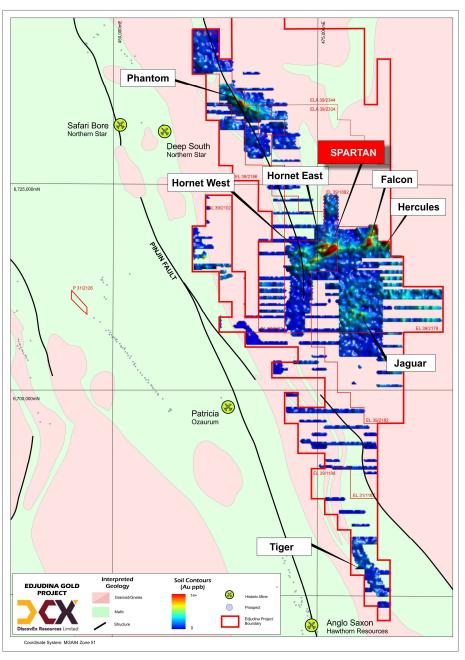


Figure 4: Targets generated from gold in soil results within the Edjudina Project.

HoleID	Max Depth	Easting	Northing	RL	Dip	Azimuth	mFrom	mTo	Intersection	Min. Type
SPAC010	71	477095	6717151	457	-60	270	33	40	7m @ 0.27 g/t Au	Transported
SPAC011	72	477150	6717151	458	-60	268	36	39	3m @ 0.29 g/t Au	Transported
SPAC012	87	476645	6716958	453	-60	271	85	86	1m @ 0.13g/t Au	Bedrock
SPAC016	92	476849	6716952	454	-90	270	82	86	4m @ 1.24 g/t Au	Bedrock
"	"	н	"	"	in	cluding	82	83	1m @ 3.42 g/t Au	Bedrock

Transported	8m @ 1.64 g/t Au	37	29	270	-90	455	6716952	476898	87	SPAC017
Transported	4m @ 2.82 g/t Au	36	32	luding	inc	"	"	"	"	"
Transported	1m @ 4.82 g/t Au	36	35	luding	inc	"	"	"	II	"
Transported	3m @ 0.13 g/t Au	15	12	270	-60	456	6716952	477054	71	SPAC019
Transported	3m @ 0.12 g/t Au	39	36	п	"	"	"	"	"	"
Transported	3m @ 0.35 g/t Au	39	36	270	-60	450	6716747	476505	56	SPAC025
Transported	4m @0.16 g/t Au	36	32	268	-60	450	6716748	476551	77	SPAC026
Bedroc	1m @ 1.06 g/t Au	75	74	п	"	=	"	"		"
Transported	9m @ 0.86 g/t Au	37	28	272	-60	452	6716750	476703	76	SPAC029
Transported	2m @ 1.64 g/t Au	34	32	11	"	"	"	"	"	"
Transporte	4m @ 0.12 g/t Au	44	40	11	"	"	"	"	"	"
Bedroc	1m @ 0.14 g/t Au	97	96	268	-60	453	6716755	476858	99	SPAC032
Transporte	1m @ 0.37 g/t Au	31	30	272	-60	448	6716553	476348	48	SPAC034
N//	NSA	-	-	270	-60	450	6716552	476540	73	SPAC038
N//	NSA	-	-	270	-60	450	6716552	476600	73	SPAC039
Bedroc	2m @ 0.24 g/t Au	84	82	270	-60	450	6716549	476651	76	SPAC040
N/	NSA	-	-	270	-60	451	6716549	476698	95	SPAC041
N/	NSA	-	-	270	-60	451	6716548	476753	104	SPAC042
N/	NSA	-	-	270	-60	451	6716547	476800	85	SPAC043
N/	NSA	-	-	270	-60	452	6716548	476904	37	SPAC044
N/	NSA	-	-	270	-60	453	6716550	477107	45	SPAC045
N/	NSA	-	-	270	-60	455	6716560	477300	58	SPAC046
N/	NSA	-	-	270	-60	458	6716550	477502	59	SPAC047
N/	NSA	-	-	270	-60	446	6716550	476101	33	SPAC048
N/	NSA	-	-	270	-60	447	6716551	476199	32	SPAC049
N/	NSA	-	-	270	-60	446	6716351	476251	51	SPAC050
N/	NSA	-	-	270	-60	447	6716351	476351	60	SPAC051
N/	NSA	-	-	270	-60	448	6716349	476452	56	SPAC052
N/	NSA	-	-	270	-60	448	6716352	476539	64	SPAC053
N/	NSA	-	-	270	-60	449	6716350	476654	72	SPAC054
Transporte	4m @ 0.24 g/t Au	28	24	270	-60	449	6716354	476749	77	SPAC055
N/	NSA	-	-	270	-60	450	6716353	476859	78	SPAC056
N/	NSA	-	-	270	-60	445	6716154	476246	66	SPAC057
N/	NSA	-	-	270	-60	445	6716153	476345	66	SPAC058
N/	NSA	-	-	270	-60	446	6716152	476457	46	SPAC059
N/	NSA	-	-	270	-60	447	6716153	476547	72	SPAC060
N/	NSA	-	-	270	-60	448	6716154	476652	72	SPAC061
N/	NSA	-	-	270	-60	449	6716155	476757	65	SPAC062
N/	NSA	-	-	270	-60	449	6716151	476851	60	SPAC063
N/	NSA	-	-	270	-60	447	6717350	475151	62	SPAC064
N/	NSA	-	-	270	-60	448	6717350	475351	58	SPAC065

N/A	NSA	-	_	270	-60	449	6717354	475559	64	SPAC066
N/A	NSA	-	-	270	-60	451	6717350	475748	50	SPAC067
N/A	NSA	-	-	274	-60	451	6717353	475848	48	SPAC068
N/A	NSA	-	-	271	-60	452	6717351	475948	56	SPAC069
N/A	NSA	-	-	269	-60	453	6717347	476048	51	SPAC070
N/A	NSA	-	-	270	-60	454	6717349	476147	74	SPAC071
N/A	NSA	-	-	275	-60	454	6717353	476249	57	SPAC072
N/A	NSA	-	-	270	-60	454	6717350	476352	56	SPAC073
N/A	NSA	-	-	269	-60	455	6717349	476451	60	SPAC074
Transported	4m @ 0.18 g/t Au	40	36	272	-60	456	6717349	476550	66	SPAC075
N/A	NSA	-	-	271	-60	457	6717352	476645	88	SPAC076
N/A	NSA	-	-	272	-60	457	6717351	476753	91	SPAC077
N/A	NSA	-	-	270	-60	458	6717347	476851	77	SPAC078
N/A	NSA	-	-	272	-60	458	6717351	476896	60	SPAC079
N/A	NSA	-	-	270	-60	458	6717350	476949	59	SPAC080
N/A	NSA	-	-	269	-60	459	6717347	477001	53	SPAC081
N/A	NSA	-	-	272	-60	459	6717352	477052	56	SPAC082
N/A	NSA	-	-	267	-60	459	6717347	477105	56	SPAC083
N/A	NSA	-	-	270	-60	459	6717345	477154	62	SPAC084
N/A	NSA	-	-	274	-60	460	6717347	477203	71	SPAC085
N/A	NSA	-	-	271	-60	460	6717349	477256	63	SPAC086
N/A	NSA	-	-	272	-60	461	6717352	477350	70	SPAC087
N/A	NSA	-	-	270	-60	462	6717349	477449	77	SPAC088
N/A	NSA	-	-	269	-60	462	6717353	477552	66	SPAC089
N/A	NSA	-	-	270	-60	448	6716951	475955	41	SPAC090
N/A	NSA	-	-	270	-60	450	6716951	476152	42	SPAC091
N/A	NSA	-	-	270	-60	450	6716950	476351	54	SPAC092
N/A	NSA	-	-	272	-60	451	6716952	476450	66	SPAC093
Transported	4m @ 0.20 g/t Au	32	28	271	-60	452	6716954	476551	73	SPAC094
Surface	4m @ 0.10 g/t Au	4	0	270	-60	454	6716951	476848	96	SPAC095
Bedrock	4m @ 0.11 g/t Au	76	72	268	-60	455	6716955	476953	77	SPAC096
N/A	NSA NSA	-	-	271	-60	457	6716947	477263	64	SPAC097
N/A	NSA	_	_	270	-60	458	6716950	477344	66	SPAC098
N/A	NSA	-	-	268	-60	459	6716949	477452	71	SPAC099
N/A	NSA	_	-	270	-60	460	6716953	477553	75	SPAC100
N/A	NSA	_	-	270	-60	466	6718753	475003	13	SPAC101
N/A	NSA	_	-	270	-60	467	6718751	475196	28	SPAC101
	NSA			270	-60	469		475405	38	SPAC102
N/A		-	-				6718755			
N/A	NSA	-	-	271	-60	469	6718751	475598	73	SPAC104
N/A	NSA	-	-	268	-60	470	6718757	475799	40	SPAC105

N/A	NSA	-	-	267	-60	470	6718750	476001	51	SPAC106
N/#	NSA	-	-	270	-60	472	6718776	476205	87	SPAC107
N/A	NSA	-	-	271	-60	473	6718751	476399	99	SPAC108
N/#	NSA	-	-	269	-60	473	6718761	476612	90	SPAC109
N/#	NSA	-	-	267	-60	473	6718742	476799	75	SPAC110
N/A	NSA	-	-	268	-60	475	6718749	477059	66	SPAC111
N/#	NSA	-	-	270	-60	478	6718754	477249	69	SPAC112
N/#	NSA	-	-	271	-60	478	6718750	477453	93	SPAC113
N/A	NSA	-	-	270	-60	458	6717753	476200	69	SPAC114
N/#	NSA	-	-	269	-60	459	6717752	476299	69	SPAC115
N/#	NSA	-	-	270	-60	459	6717747	476402	80	SPAC116
N/#	NSA	-	-	269	-60	459	6717747	476500	85	SPAC117
N/#	NSA	-	-	270	-60	460	6717749	476590	81	SPAC118
N/A	NSA	-	-	270	-60	461	6717759	476694	102	SPAC119
N/A	NSA	-	-	273	-60	462	6717753	476792	81	SPAC120
N/#	NSA	-	-	272	-60	462	6717751	476903	63	SPAC121
N/#	NSA	-	-	271	-60	463	6717747	477002	67	SPAC122
N/#	NSA	-	-	275	-60	463	6717757	477094	55	SPAC123
N/#	NSA	-	-	271	-60	464	6717749	477198	76	SPAC124
N/#	NSA	-	-	270	-60	465	6717751	477301	81	SPAC125
N/#	NSA	-	-	270	-60	466	6717755	477403	76	SPAC126
N/#	NSA	-	-	269	-60	467	6717751	477503	80	SPAC127
Bedrock (EOH	1m @ 1.35 g/t Au	63	62	271	-60	451	6717149	476148	63	SPAC128
N/#	NSA	-	-	270	-60	453	6717151	476351	62	SPAC129
Bedrock (EOH	9m @ 0.18 g/t Au	69	60	270	-60	453	6717150	476449	69	SPAC130
N/#	NSA	-	-	272	-60	459	6717150	477255	54	SPAC131
N/#	NSA	-	-	271	-60	459	6717149	477351	84	SPAC132
N/#	NSA	-	-	273	-60	460	6717148	477453	76	SPAC133
Transported	4m @ 0.12 g/t Au	44	40	270	-60	461	6717151	477551	78	SPAC134
Surface	8m @ 0.11 g/t Au	8	0	268	-90	455	6716950	476876	103	SPAC135
Transported	8m @ 0.58 g/t Au	36	28	"	"	п	II	II	"	"
Surface	8m @ 0.21 g/t Au	8	0	273	-90	455	6716954	476921	54	SPAC136
Transported	4m @ 0.75 g/t Au	32	28	II	"	п	н	"	"	"
	NSA	-	-	270	-60	460	6716765	477611	76	SPAC137
	NSA	-	-	269	-60	458	6716341	477636	32	SPAC138
	NSA	-	-	273	-60	448	6716754	476050	35	SPAC139
	NSA	-	_	271	-60	448	6716745	476153	30	SPAC140
	NSA	-	-	262	-60	448	6716749	476251	41	SPAC141

l.		1	ı	1			I	I		
SPAC142	53	476950	6716765	454	-60	269	-	-	NSA	
SPAC143	45	477053	6716751	455	-60	271	-	-	NSA	
SPAC144	42	477147	6716752	455	-60	270	-	-	NSA	
SPAC145	70	477703	6716551	460	-60	272	-	-	NSA	
SPAC146	46	477754	6716952	462	-60	269	-	-	NSA	
SPAC147	81	477948	6716951	464	-60	272	-	-	NSA	
SPAC148	55	478151	6716950	467	-60	268	-	-	NSA	
SPAC149	84	478351	6716950	470	-60	269	-	-	NSA	
SPAC150	84	478549	6716957	472	-60	271	80	84	4m @ 0.42 g/t Au	Bedrock (EOF
SPAC151	80	478753	6716953	474	-60	272	-	-	NSA	
SPAC152	85	478951	6716950	475	-60	273	-	-	NSA	
SPAC153	81	479049	6716949	475	-60	270	-	-	NSA	
SPAC154	74	479151	6716953	474	-60	270	-	-	NSA	
SPAC155	68	479248	6716958	473	-60	271	-	-	NSA	
SPAC156	68	479352	6716952	471	-60	270	-	-	NSA	
SPAC157	82	479551	6716953	469	-60	269	-	-	NSA	
SPAC158	61	479751	6716953	467	-60	269	-	-	NSA	
SPAC159	69	479950	6716950	465	-60	271	-	-	NSA	
SPAC160	78	480158	6716950	465	-60	270	-	-	NSA	
SPAC161	62	480355	6716955	463	-60	269	-	-	NSA	
SPAC162	66	480548	6716957	462	-60	274	-	-	NSA	
SPAC163	71	480755	6716953	461	-60	270	-	-	NSA	
SPAC164	77	480952	6716955	461	-60	271	-	-	NSA	
SPAC165	79	481154	6716955	461	-60	269	-	-	NSA	
SPAC166	34	477751	6717353	464	-60	270	-	-	NSA	
SPAC167	62	477947	6717354	466	-60	270	_	_	NSA	
SPAC168	58	478152	6717351	468	-60	270	-	_	NSA	
SPAC169	72	478349	6717350	470	-60	272	-	-	NSA	
SPAC170	77	478559	6717368	473	-60	270	-	_	NSA	
SPAC170	90	478755	6717350	474	-60	270	_	_	NSA	
SPAC171 SPAC172	109	478945	6717349	474	-60	272	-	_	NSA	
SPAC172	98	479147	6717350	475	-60	269	-	-	NSA	
SPAC173	84	479351	6717349	472	-60	205	_	_	NSA	
SPAC174	97	477659	6717362	472	-60	270	-	-	NSA	
SPAC175	74	477652	6718757	480	-60	270	-	-	NSA	
SPAC176	53	477854	6718758	480	-60	270	-	-	NSA	
SPAC178 SPAC179	66 61	478054 478254	6718756 6718753	483 484	-60 -60	270 270	-	-	NSA NSA	

SPAC180	55	478452	6718754	484	-60	271	-	-	NSA	
SPAC181	44	478650	6718776	481	-60	269	-	-	NSA	
SPAC182	85	478060	6716952	466	-60	271	-	-	NSA	
SPAC183	96	477597	6717750	468	-60	270	-	-	NSA	
SPAC184	83	477700	6717751	467	-60	269	-	-	NSA	
SPAC185	76	477798	6717747	468	-60	274	-	-	NSA	
SPAC186	86	476707	6717351	457	-60	268	-	-	NSA	
SPAC187	67	476499	6717162	454	-60	269	-	-	NSA	
SPAC188	83	476596	6716960	452	-60	271	-	-	NSA	

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Toby Wellman, a competent person who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM). Mr Wellman has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code"). Mr Wellman is the Executive Managing Director of DiscovEx Resources Limited and consents to the inclusion in this announcement of the Exploration Results in the form and context in which they appear.

The forward-looking statements in this announcement are based on the Company's current expectations about future events. They are, however, subject to known and unknown risks, uncertainties and assumptions, many of which are outside the control of the Company and its Directors, which could cause actual results, performance or achievements to differ materially from future results, performance or achievements expressed or implied by the forward-looking statements in this announcement. Forward looking statements generally (but not always) include those containing words such as 'anticipate', 'estimates', 'should', 'will', 'expects', 'plans' or similar expressions.

Authorised for release by and investor enquiries to: Mr Toby Wellman Managing Director T: 08 9380 9440

JORC CODE 2012 EDITION TABLE 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 	A cyclone was provided by the contracted drilling company to ensure the reliability and accuracy of samples collected. In-house field personnel then collected the samples using a clean scoop, achieving a weight between 2kg - 4kg. Drilling samples were collected by an in-house field crew, with drilling operations performed by an external contractor (Raglan Drilling).

Criteria	JORC Code explanation	Commentary		
	kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.			
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	AC drilling		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. What are a relationship contact between assessed. 	Drilling intervals were assessed to determine the approximate recovery as a percent. Recovery and condition of samples were recorded. The cyclone was also kept balanced to prevent		
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	potential build up and contamination. No bias between sample recovery and grade has been identified.		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All drilling logged in detail. Qualitative: Lithology, alteration, mineralisation etc.		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	A cyclone was provided by the contracted drilling company to ensure the reliability and accuracy of samples collected. In-house field personnel then collected the samples using a clean scoop and placed into a calico. Duplicates were inserted with a frequency of 1:50. Standards were inserted with a frequency of 1:50. Samples were then pulverised, collected and assayed at ALS. Composite samples were assayed for gold using Aqua regia with an ICP- MS finish, except for the last metre of every hole, which was assayed for gold using aqua regia and multi-elements using four-acid digest. The sample sizes are appropriate for the first pass nature of the exploration.		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, 	Submitted to ALS (Perth). Samples were assayed for gold using aqua regia with an ICP-MS finish, except for the last metre of every hole, which was assayed for gold using aqua regia and multi-elements using four- acid digest.		

Criteria	JORC Code explanation	Commentary
	reading times, calibrations factors applied and their	Aqua regia is considered a partial digest.
	 derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	No geophysical tools were used to determine any element concentrations used in the reported results. Duplicates were inserted with a frequency of 1:50. Standards were inserted with a frequency of 1:50.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of bedrock data, data entry 	No twinning of holes was completed. Data is recorded digitally at the project within standard industry software with assay results received digitally also.
	 procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	All data is stored within a suitable database. No assay adjustments have been made.
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sample and drill locations recorded with a handheld Garmin GPS (+/- 3m). Sampling personnel movements are logged via GPS and spot trackers, confirming locations of sampling points.
	 Specification of the grid system used. Quality and adequacy of topographic control. 	Grid System – MGA94 zone 51
		Drill holes – completed on 200 x 50 and 200 x 100m spacing.
		Topographic control is accurate to 0.5m, with data sources from a gravity survey completed in July 2022.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Samples were collected as 4 m composites, with intervals of interest sampled as 1 m samples. Additionally, the end of holes samples were taken as 1 m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill holes were designed at 100 x 200 m spacing, with density increasing to 50 m x 200 m over areas of interest.
Sample security	• The measures taken to ensure sample security.	Samples were placed in bulka bags at ALS Kalgoorlie, delivered directly by DCX staff.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the sampling technique were completed.

Criteria	JORC Code explanation			
Section 2 – Reporting of	Exploration Results			
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of	Exploration activities were conducted within tenements E39/1882 and E39/2178. DCX holds an 80% interest in E39/1882 with the remaining 20% owned by Gateway Projects WA Pty Ltd. A 1.5% royalty on future production greater than 200,000 oz of gold or equivalent is also in place over E39/1882. E39/2178 is owned 100% by DCX with no royalties. All tenements are in good standing		
	reporting along with any known impediments to obtaining a licence to operate in the area.			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration has been undertaken by several companies over time including but not limited to Dominion Mining, Arimco Mining Limited and Delta Gold. This work was largely limited to surface geochemistry, surface geophysics and shallow aircore and RAB drilling with only minor deeper RC drilling being undertaken.		
Geology	Deposit type, geological setting and style of mineralisation.	Exploration is for shear hosted gold and komatiitic nickel deposits typical of the Yilgarn Region of Western Australian		
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar	Refer to Table 1 within this Announcement. Refer to Table 1 within this Announcement.		
	Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	Refer to Table 1 within this Announcement.		
Drill hole Information	Dip and azimuth of the hole	Refer to Table 1 within this Announcement.		
Drill note information	Down hole length and interception depth	Refer to Table 1 within this Announcement.		
	Hole length.	Refer to Table 1 within this Announcement.		
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Table 1 within this Announcement.		
	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No alteration to the results were completed.		
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Weighted average was used when calculating intervals with different sample lengths.		
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents have been used within this announcement		

	These relationships are particularly important in the reporting of Exploration Results.	No relationship between widths and intercept lengths have been made as all results are point samples
Relationship between mineralisation widths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Mineralisation is poorly understood and no comments on its nature can be made with confidence at this stage.
and intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Downhole length intervals are reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures 1 and 2 within this Announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results (both high and/or low) have been used when included within this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration other than that mentioned above has been used.
	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Additional AC drilling will be completed at the three target areas specified within the text.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures 1,2, 3 & 4 within this Announcement.