ABN: 31 008 402 391

Level 11, 52 Phillips Street Sydney NSW 2000

GPO Box 225 Sydney NSW 2001

Tel: 61 2 8316 3998 Fax: 61 2 8316 3999

Website: www.gatewaymining.com.au

ASX Announcement: 31 July 2019

JUNE 2019 QUARTERLY ACTIVITIES AND CASH FLOW REPORT

INTRODUCTION

During and subsequent to the reporting period Gateway Mining Limited (ASX: GML) (**Gateway** or **Company**) reported positive results from programs of Reverse Circulation (**RC**) and diamond drilling at its 100%-owned **Gidgee Gold Project** in Western Australia (Figure 1), where recent drilling has identified significant extensions to both the cornerstone Whistler and Montague Gold Deposits.

The drilling success continues to demonstrate the substantial exploration upside at the Gidgee Project and the potential for both the Whistler and Montague prospects to evolve into significant large-scale gold deposits.

GIDGEE GOLD PROJECT – Summary

Montague Gold Deposit

Highly encouraging results received from two drill programs, including a 5-hole diamond program designed to
in-fill and extend the gold mineralisation and provide quality samples for metallurgical test work prior to
resource modelling, and a subsequent RC program focused on testing extensions to the gold system to the
north and south. Key results from this program were¹:

•	GDD015	4.5 metres @ 10.2g/t Au from 121 metres
•	GDD013	2.0 metres @ 5.98g/t Au from 163 metres
•	GDD014	5.5 metres @ 1.40g/t Au from 174 metres
•	GRC380	9.0 metres @ 5.20g/t Au from 72 metres

- The results demonstrate that the mineralisation at Montague:
 - Remains open down-plunge to the north-west.
 - Remains totally open along strike to the south, with the potential for major down-dip extensions.
 - Has excellent potential for additional high-grade, sub-parallel trends along the same structure to the north and south of the currently defined position.
- New results being incorporated into the interim resource modelling process are currently underway for both the Whistler and Montague Deposits, while also demonstrating the significant exploration potential at the Gidgee Project beyond the upcoming maiden Resource estimate.

Whistler Gold Deposit

• Diamond and RC drilling successfully extended the high-grade mineralisation both at depth and north and south along strike. Drilling also intersected a number of potentially large-scale, flat-lying mineralised structures that demonstrate the potential for a large-scale gold system to be identified. Key results included²:

•	GRC375	12.0 metres @ 5.00g/t Au from 79 metres
•	GRC376	7.0 metres @ 6.55g/t Au from 114 metres
•	GDD011	15.4 metres @ 2.94g/t Au from 128 metres*
•	GRC374	7.0 metres @ 2.26g/t Au from 21 metres
•	GRC378	5.0 metres @ 2.82g/t Au from 138 metres
•	88MRD24	12.5 metres @ 2.18g/t Au from 128 metres*
*Pri	eviously reported	

■ GDD012

2.0 metres @ 9.4g/t Au from 250 metres - Main Zone

0.5 metres @ 4.6g/t Au from 68 metres - Hanging wall lode

2.0 metres @ 6.9g/t Au from 130 metres - Hanging wall lode

1.0 metres @ 7.6g/t Au from 185 metres - Hanging wall lode

¹ See Appendix 2 for details

² See Appendix 2 for details

- The results demonstrate that the Whistler Gold Deposit remains open along strike both to the north and south and that multiple structurally controlled, high-grade domains are present within a broader mineralised envelope. These high-grade domains remain open down-plunge.
- The presence of thick, high-grade zones of mineralisation in these near-surface positions will have a significantly positive impact on the optimisation of any future open pit development.
- The new results are being incorporated into the resource modelling process that is currently underway.

Figure (1): Gidgee Gold Project Location Plan

Montague Gold Deposit

 During and subsequent to the reporting period the Montague Gold Deposit was the focus of two programs of drilling. The initial phase was a 5-hole program of diamond drilling designed to in-fill and extend the gold mineralisation and also to provide quality samples for metallurgical test work prior to resource modeling. This was immediately followed by a program of RC drilling focused on extensions to the gold system to the north and south. Key results from this program were³:

•	GDD015	4.5 metres @ 10.2g/t Au from 121 metres
•	GDD013	2.0 metres @ 5.98g/t Au from 163 metres
•	GDD014	5.5 metres @ 1.40g/t Au from 174 metres
•	GRC380	9.0 metres @ 5.20a/t Au from 72 metres

- The results demonstrate that the mineralisation at Montague:
 - Remains open down-plunge to the north-west.
 - Remains totally open along strike to the south, and highlights the potential for major down-dip extensions.
 - Has excellent potential for additional high-grade, sub-parallel trends along the same structure to the north and south of the currently defined position.

³ See Appendix 2 for details

Key Points

- The program of targeted RC drilling was completed to test for near-surface extensions of the Montague Deposit gold mineralisation, and also to identify the potential for additional high-grade trends within the broader mineralised envelope (Figures 2 and 3).
- The drilling program has highlighted the potential for thick, high-grade mineralisation to extend for a considerable distance to the south and down-dip of the currently defined mineralised zone at Montague. In fact, the southern and down-dip extensions remain fully open and untested.
- Results from this recent program of RC drilling were:
 - GRC380 9.0 metres @ 5.2g/t Au from 72 metres
 - GRC381 2.0 metres @ 0.8g/t Au from 85 metres; within wider shear zone
 - GRC379 Wide shear zone intersected at 52m; anomalous gold results to 0.3g/t
- The intercept in GRC380 correlates with previously reported high-grade intercepts on the southern margin
 of the deposit shown below. This provides further evidence of a significant and emerging trend of highgrade mineralisation to the south of the deposit:
 - GRC357 5.0 metres @ 11.5g/t Au from 104 metres
 - GRC342 9.0 metres @ 4.24g/t Au from 89 metres
 - GRC325 5.0 metres @ 4.81g/t Au from 70 metres
- GRC379 and GRC381 were both drilled as a first-pass test targeting large step-out positions to the north
 and south of Montague. Both intersected the targeted shear zone and, despite only returning anomalous
 assay results, provide important information regarding the geometry and trend of the main mineralised
 zones. With an enhanced understanding of the plunge controls of the mineralisation, the Company will be
 in a better position to accurately and cost effectively target the shear zone with view to identifying highquality mineralisation.

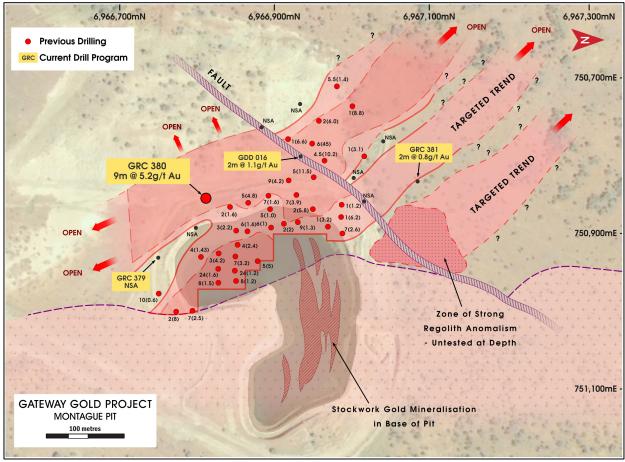


Figure (2): Montague Gold Project - Plan Projection of Gold Distribution

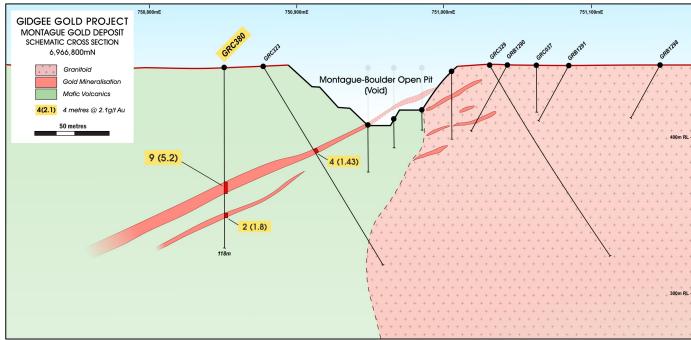


Figure (3): Montague Gold Project - Interpreted Cross Section (Looking north)

- Diamond hole GDD016 intersected a position that has been affected by what is now understood to be a latestage off-setting fault. As a result, the hole did not intersect the main Montague shear zone but returned an intercept of 2m @ 1.1g/t Au from the cross-cutting structure.
- Diamond hole GDD013 was extended to target the deeper Gordon's Shear Zone some 120m away from the
 original intersection (GRC330: 4m @ 24.1g/t Au). This hole was also impacted by the presence of the latestage off-setting fault. Closer-spaced drilling will now target the original intersection to determine the potential
 of this structure.
- Results from the last four widely-spaced reconnaissance RC holes drilled to the north of Montague will be reported in the September guarter.
- The new results are being incorporated into the interim resource modelling process that is currently underway for both the Whistler and Montague Deposits, while also demonstrating the significant exploration potential at the Gidgee Project beyond the upcoming maiden Resource estimate.

Whistler Gold Deposit

 Diamond and RC drilling at Whistler has successfully extended the high-grade mineralisation both at depth and north and south along strike. In addition, the drilling also intersected a number of potentially large-scale, flatlying mineralised structures that demonstrate the potential for a large-scale gold system to be identified. Key results reported during or subsequent to the guarter were⁴:

•	GRC375	12.0 metres @ 5.00g/t Au from 79 metres
•	GRC376	7.0 metres @ 6.55g/t Au from 114 metres
•	GDD011	15.4 metres @ 2.94g/t Au from 128 metres*
•	GRC374	7.0 metres @ 2.26g/t Au from 21 metres
•	GRC378	5.0 metres @ 2.82g/t Au from 138 metres
•	88MRD24	12.5 metres @ 2.18g/t Au from 128 metres*
*Pre	eviously reported	
•	GDD012	2.0 metres @ 9.4g/t Au from 250 metres - Main Zone
		0.5 metres @ 4.6g/t Au from 68 metres - Hanging wall lode
		2.0 metres @ 6.9g/t Au from 130 metres - Hanging wall lode
		1.0 metres @ 7.6g/t Au from 185 metres - Hanging wall lode

⁴ See Appendix 2 for details

- The results demonstrate that the Whistler Gold Deposit remains open along strike both to the north and south and that multiple structurally controlled, high-grade domains are present within a broader mineralised envelope. These high-grade domains remain open down-plunge.
- The presence of thick, high-grade zones of mineralisation in these near-surface positions will have a significantly positive impact on the optimisation of any future open pit development.
- The new results are being incorporated into the resource modeling process that is currently underway.

Key Points – Whistler High-Grade Extensions

- A program of targeted RC drilling was completed to test for near-surface extensions of the Whistler Deposit gold mineralisation, with a particular focus on confirming the presence of additional high-grade domains within the broader mineralised envelope (Figure 4, 5 and 6).
- The results clearly demonstrate the presence of two high-grade domains to the immediate north and south of the deposit. Key assay results are:

GDD012 2.0 metres @ 9.40g/t Au from 250 metres
 GRC375 12.0 metres @ 5.00g/t Au from 79 metres
 GRC376 7.0 metres @ 6.55g/t Au from 114 metres
 GDD011 5.4 metres @ 2.94g/t Au from 128 metres*

- The mineralisation remains open to the north and south, and the identified high-grade domains remain open at depth.
- The presence of thick, high-grade zones of mineralisation in these near-surface positions will have a significant, positive impact on the optimisation of any future open pit development at Whistler.
- Significant potential exists over an extended strike length of more than 1.2km (see the regional Long Section in Figure 5) to identify and delineate additional new zones of gold mineralisation. Historical shallow drilling has consistently intersected significant zones of mineralisation on or near the contact between the granodiorite and the mafic volcanic rocks, highlighting the outstanding prospectivity of this corridor.
- A single diamond hole (GDD012) was successfully drilled to test the down-dip extension of the main mineralised structure (Figures 6). A high-grade result of 2 metres @ 9.4g/t Au was returned in the targeted position.
- The result confirms the plunge of the gold mineralisation ahead of planning for future drilling and also confirms the potential for significant high-grade structures parallel to the main zone.
- Additionally, diamond hole GDD012 intersected a series of shear zones hosted by mafic volcanics in the "Hanging Wall" of the main Whistler mineralised zone. Results included: 0.5 metres @ 4.6g/t Au, 2.0 metres @ 6.9g/t Au and 1.0 metres @ 7.6g/t Au. The significance of these results is that they confirm the potential for large-scale mineralised structures that extend along the entire ~300 metre strike length of the Whistler Gold Deposit.
- The new results are now being incorporated into the resource modeling process that is currently underway for the Whistler Gold Deposit.

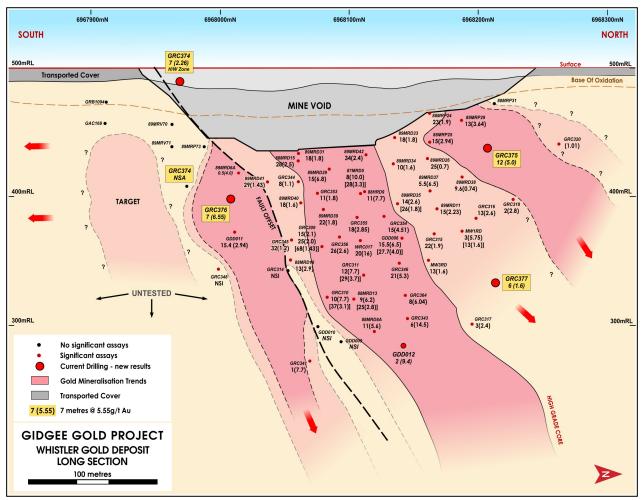


Figure (4): Whistler Gold Project – Interpreted Long Section

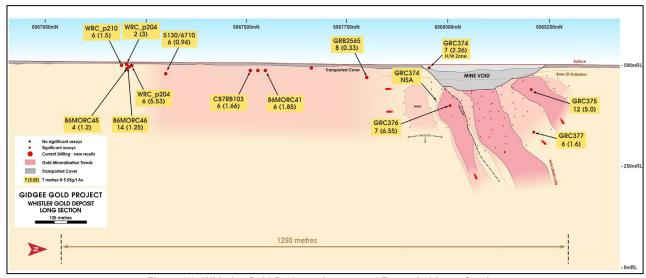


Figure (5): Whistler Gold Project – Interpreted Expanded Long Section

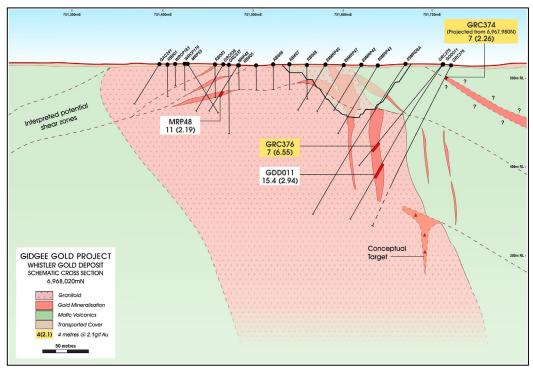


Figure (6): Whistler Gold Project - Interpreted Cross Section (Looking north)

Key Points – Whistler New Mineralised Structures

A program of quality geological assessment work by Gateway's exploration team, including a significant amount of re-logging of historical drilling samples, has highlighted the importance of major flat-lying structures as a control of the mineralisation in the broader area. This control is highly evident at the Montague Gold Deposit and has now been fully recognised at Whistler.

As a result of this work, a number of targets were selected for initial drill testing. The outcomes are positive and the key results within these structures are:

GRC374 7.0 metres @ 2.26g/t Au from 21 metres
 GRC378 5.0 metres @ 2.82g/t Au from 138 metres
 88MRD24 12.5 metres @ 2.18g/t Au from 128 metres (historical result)
 83MORC35 4.0 metres @ 14.6g/t Au from 16 metres (historical result)

• The **Cardinal Shear Zone** is located to the immediate north of the Whistler Deposit. GRC378, which was drilled as a follow-up to a historical intersection returned from drill hole 88MRD24, intersected a significantly mineralised shear zone that confirms the flat-lying nature of the structure, rather than the previously interpreted steep orientation.

The following are considered to be important attributes of the Cardinal Shear Zone:

- The mineralised shear zone remains open in all directions.
- It is relatively shallow and the up-dip projection moves closer to surface.
- The interpreted intersection with the granodiorite is considered a highly prospective target for future drilling. In particular, the structure is interpreted to intersect with the down-plunge projection of the main Whistler Deposit.
- Preliminary metallurgical assaying demonstrates that the mineralisation is free-milling.
- Historical drill hole 86MORC35 (4m @ 14.6g/t Au) is also now being interpreted as the near-surface expression
 of a similar flat-lying structure, although drilling is required to confirm this.

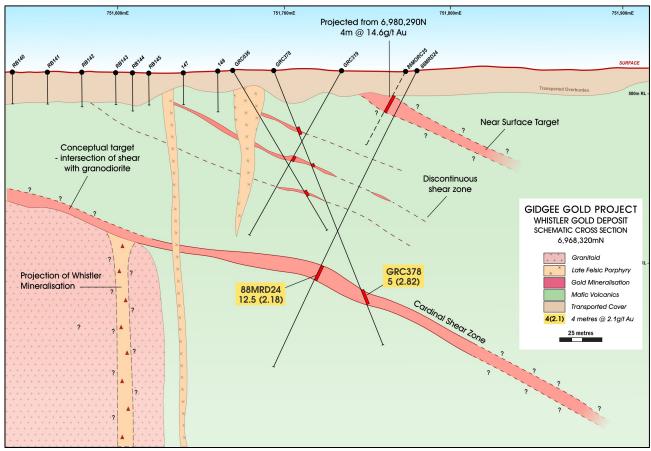


Figure (7): Cardinal Shear Zone - Interpreted Cross Section (Looking north)

- The second major structure was intersected at a shallow depth in GRC374 (7m @ 2.26g/t Au from 21m).
 The flat-lying structure is located within the immediate hanging wall to the main granodiorite-hosted Whistler Deposit (Figure 7). As previously noted, there are also a series of mineralised sub-vertical shear zones running the entire length of the Whistler Gold Deposit.
- The geological review has also demonstrated that at least one of the major mineralised structures penetrates through the entire width of the granodiorite to the west of the Whistler Gold Deposit (Figure 7). Although the mineralisation is discontinuous (best intersection 11m @ 2.19g/t (MRP48)), it highlights the intensity of the structure and provides a vector towards mafic-hosted shear zones on the western margin of the granodiorite. This is the same setting as the Montague Gold Deposit, located 1km to the south.

REGIONAL PROJECTS

No exploration activity was undertaken on the Company's regional exploration projects during the reporting period.

EDJUDINA PROJECT

During the reporting period, the Company announced that it had entered into an option agreement for the sale of its Edjudina Project exploration licences in the Laverton Region of Western Australia as part of its strategy of crystallising value from its portfolio of non-core exploration assets while maintaining a strong focus on gold exploration and development at its flagship Gidgee Gold Project.

The Company, through its wholly-owned subsidiary Omni Projects, entered into a conditional option agreement (**Transaction**) with ASX listed Trek Metals Limited (ASX:TKM) (**Trek**) under which Trek has an exclusive option to acquire Omni Project's interests in E39/1765, E39/1882, E31/1150 and E31/1134 (**Tenements**) (**Option Agreement**).

Under the terms of the Option Agreement, in consideration for a non-refundable option fee of A\$10,000, Trek has an exclusive six-month option (**Option Term**) to acquire the Tenements (**Option**). Trek must also conduct a minimum \$100,000 of expenditure on the Tenements, which includes drilling commencing within three months of signing the Option Agreement (**Minimum Expenditure**).

Completion of the Transaction is subject to a number of conditions precedent (Conditions).

Subject to the satisfaction or waiver of the Conditions, Trek may at any time during the Option Term exercise the Option by providing written notice to the Company, and pay to the Company the following consideration:

- (a) (Cash Consideration): cash consideration of A\$50,000;
- (b) (**Share Consideration**): equivalent of A\$200,000 of Trek shares calculated based on a 5-day VWAP, subject to a voluntary escrow period of six months; and
- (c) (**Royalty Consideration**): the grant of a 1.5% net smelter royalty over the Tenements (payable after the first production of 200,000 ounces of Au).

Completion will occur five business days after all of the Conditions have been satisfied or waived by the parties (**Completion**).

Subject to Completion occurring and Trek making a public announcement of an indicated JORC resource of more than 400,000 ounces of gold (or an equivalent mineral product) (**Public Announcement**), The Company will receive the following deferred consideration:

- (a) (Cash Payment): a cash payment of A\$1,000,000 payable within 14 days of the Public Announcement; and
- (b) (Cash or Share Payment): A\$3,000,000 in cash or Trek shares (valued at a 5 day VWAP) at Trek's absolute discretion payable within 14 days of a public announcement of a decision to mine.

CARTERTON PROJECT

During the reporting period, the Company entered into an option agreement for the sale of its exploration licence located at the northern end of the Southern Cross Greenstone Belt in Western Australia. The transaction is consistent with its strategy of crystallising value from its portfolio of non-core exploration assets while maintaining a strong focus on gold exploration and development at its flagship Gidgee Gold Project.

The Company entered into a conditional option agreement (**Transaction**) with ASX-listed Syndicated Metals Limited (ASX: SMD) (**SMD**) under which SMD has an exclusive option to acquire Omni Projects' interests in E77/2309 (**Tenement**) (**Option Agreement**).

Under the terms of the Option Agreement, in consideration for a non-refundable option fee of AUD\$10,000, SMD has an exclusive 12-month option (**Initial Option Term**) to acquire the Tenement (**Option**).

SMD may at any time prior to expiry of the Initial Option Term elect to extend the Option by a further 12 months (**Second Option Term**) by providing written notice to the Company and paying a further non-refundable option fee of AUD\$10,000. This will result in SMD having an aggregate 24-month Option to acquire the Tenement (**Term**).

SMD may at any time during the Term exercise the Option by providing written notice to the Company and enter into a binding tenement sale agreement (**Tenement Sale Agreement**), and pay to the Company the following consideration:

- (a) (Cash or share Consideration): A\$300,000 payable in cash or SMD shares (valued at a 5-day VWAP) at Gateway's absolute discretion; and
- (b) (Royalty Consideration): the grant of a 1.5% gross revenue royalty over the Tenement.

Completion will occur five business days after the exercise of the Option or such other date as agreed in writing between the parties (**Completion**). During the Term and in the event of exercise of the Option, then until Completion, SMD shall be solely responsible for:

- (a) Maintaining the Tenement in good standing in accordance with all applicable laws including minimum expenditure requirements being met and the payment of all rates and rents; and
- (b) All rehabilitation of the Tenement required as a result of its activities on the Tenement including all costs relating to such rehabilitation.

TENEMENTS

There have been no material changes to the Company's tenement holdings during the reporting period (see Appendix 1).

CAPITAL RAISING

During the reporting period, on 10 April 2019 the Company announced that it had successfully completed a capital raising of A\$2.0 million (before costs) (**Placement**) to institutional, professional and sophisticated investors to underpin a major new phase of drilling and exploration at the Gidgee Gold Project.

The Placement, which comprised the issue of 154,988,385 shares at an issue price of \$0.013 per share, was strongly supported by existing and new investors including, subject to shareholder approval, by the Company's directors.

The proceeds of the Placement will underpin a major new phase of drilling and exploration at the Gidgee Gold Project. The new exploration program will build on the Company's drilling success over the past 12 months, focusing on an impressive pipeline of targets ranging from advanced prospects such as Whistler and Montague to the emerging potential of the Montague Granodiorite contact — where Gateway is targeting large-scale gold potential — plus a suite of shallow regional targets with the potential to host a significant oxide gold component.

Peter Langworthy Managing Director

For and on behalf of GATEWAY MINING LIMITED

Competent Person Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Peter Langworthy who is a full-time employee of Gateway Mining Ltd and is a current Member of the Australian Institute of Mining and Metallurgy. Mr Peter Langworthy has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Langworthy consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

APPENDIX (1): GATEWAY MINING LIMITED'S CONSOLIDATED TENEMENT HOLDINGS

Project	Tenement ID	Ownership
Gidgee	E57/945	GML
Gidgee	M57/485	GML 75%, Estuary Resources NL 25%
Gidgee	E57/793	GML 75%, Estuary Resources NL 25%
Gidgee	E57/405	GML
Gidgee	E57/874	GML
Gidgee	E57/875	GML
Gidgee	E57/888	GML
Gidgee	E57/823	GML
Gidgee	E57/824	GML
Gidgee	E57/688	GML
Gidgee	E57/687	GML
Gidgee	E57/417	GML
Gidgee	M57/48	GML 85%, Goldfan Pty Ltd 15%
Gidgee	M57/98	GML 85%, Goldfan Pty Ltd 15%
Gidgee	M57/99	GML 85%, Goldfan Pty Ltd 15%
Gidgee	M57/217	GML 85%, Goldfan Pty Ltd 15%
Gidgee	E57/807	GML
Gidgee	M57/429	GML 75%, Estuary Resources NL 25%
Gidgee	E57/876	GML
Gidgee	E57/1004	GML
Gidgee	E57/1005	GML
Gidgee	E57/1057	Omni Projects
Gidgee	E57/1067	Omni Projects
Gidgee	P57/1407	Omni Projects
Gidgee	P57/1409	Omni Projects
Gidgee	P57/1410	Omni Projects
Gidgee	P57/1411	Omni Projects
Gidgee	P57/1412	Omni Projects
Gidgee	P57/1413	Omni Projects
Edjudina	E31/1134	Omni Projects
Edjudina	E31/1150	Omni Projects
Edjudina	E39/1765	Omni Projects
Edjudina	E39/1882	Omni Projects
Cunyu	E51/1762	85% Omni Projects 15% Milford Resources P/L
Bryah Basin	E51/1738	Omni Projects
Bryah Basin	E52/3248	Auris 85%, Omni Projects 15%
Bryah Basin	E52/3273	Omni Projects
Bryah Basin	E52/3291	Auris 85%, Omni Projects 15%
Bryah Basin	E52/3510	Omni Projects
Bryah Basin	E52/1842	Omni Projects
Sylvania	E52/3365	Omni Projects
Sylvania	E52/3366	Omni Projects
Southern Cross	E77/2309	Omni Projects
Edna May	E77/2290	Omni Projects

APPENDIX (2): TABLES OF SIGNIFICANT DRILLING INTERSECTIONS

	Whistler Gold Deposit Significant Drilling Results										
HoleID	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)	
							250	252	2.0	9.4	
GDD012	751760	6968140	514	-60	270	270	68	68.5	0.5	4.6	
GDD012	731700	0900140	314	-00	210	270	130	132	2.0	6.9	
							185	186	1.0	7.6	
GRC0343	751728	6968140	500	-59	270	263	198	204	6	14.5	
GRC0344	751703	6968059	500	-50	270	143	103	111	8	1.1	
GRC0345	751712	6968060	500	-59	272	183	125	157	32	1.2	
							149	170	21	5.3	
GRC0346	751710	6968142	500	-60	270	243	177	178	1	19.9	
							186	187	1	5.3	
GRC0350	751742	6968055	500	-60	270	263	-	-	-	NSR	
GRC0353	751696	6968090	500	-50	270	111	100	111	11	1.8	
GRC0354	751698	6968123	500	-57	270	177	119	134	15	4.5	
GRC0355	751698	6968112	500	-56	270	153	114	132	18	2.9	
GRC0356	751699	6968087	500	-58	272	177	126	152	26	2.6	
GRC0364	751726	6968130	500	-58	272	245	190	198	8	6.0	
GDD011	751707	6968009	513	-60	270	200.2	128	143.4	15.4	2.94	
GRB2465	751792	6967802	513	-60	270	38	30	38	8	0.33	
86MORC41	751803	6967580	513	-60	90	34	11	17	6	1.85	
C87RB103	751819	6967512	513	-90	0	18	12	18	6	1.66	
5130/6710	751690	6967303	513	-90	0	28	22	28	6	0.94	
WRC_p204	751689	6967217	513	-60	90	26	10	16	6	5.53	
86MORC46	751714	6967211	513	-60	90	25	0	14	14	1.25	
86MORC45	751700	6967205	513	-60	90	25	15	19	4	1.2	
WRC_p214	751728	6967204	513	-90	0	22	4	6	2	3	
WRC_p210	751720	6967188	513	-60	315	22	4	10	6	1.5	

GRC0348, GRC0351 and GRC352 were drilled as RC pre-collars in anticipation of follow-up diamond drilling.
All holes reported as downhole widths.

7 111 110100 1010	Whistler Hanging Wall Zone											
			Wh	nistler l	Hanging		ne					
Hole ID	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)		
GDD010	751761	6968066	514	-60	270	300.8	131	133	2.0	6.0		
							161	164	3.0	4.0		
GRC311	751730	6968107	514	-60	270	251	41	44	3.0	3.1		
WRC018	751777	6968112	514	-60	270	339.9	96	101	5.0	6.0		
							179.6	181.6	2.0	12.0		
86MORC35	751770	6968308	514	-60	270	43	16	18	2.0	12.5		
88MRD024	751778	6968310	514	-60	270	195	133	138.5	5.5	4.5		
Hole ID	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)		
89MRP48	751478	6968013	513	-60	270	60	32	33	11	2.2		
C88RB009	751389	6968112	514	-60	270	25	0	25	25	0.9		
89MRP51	751458	6968221	514	-60	270	69	29	38	9.0	2.03		
Hole ID	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)		
GWAC0125	751202	6967424	500	-60	090	36	20	36	16	1.73		
GWAC0106	751034	6967417	500	-60	090	55	13	20	7	1.34		
MOA143R	751050	6967425	500	-90	000	56	33	56	23	2.03		
			Whist	ler – H	igh Gra	de Exten	sions					
Hole ID	MGA_E	MGA_N	RL	Dip	Azi	EOH	From (m)	То	Width (m)	Au (g/t)		

						(m)		(m)		
GRC375	751645	6968240	513.9	-50	230	123	79	91	12	5.00
GRC376	751710	6968020	513.8	-50	270	148	114	121	7	6.55
GRC377	751705	6968230	513.9	-60	270	228	206	212	6	1.60
		Whistl	er – Disc	covery	of New	Minerali	sed Structure	es		
Hole ID	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)
GRC374	751715	6967980	513.7	-50	270	148	21	28	7	2.26
GRC378	751695	6968310	509	-70	90	168	138	143	5	2.82
MRP48*	751478	6968013	515	-60	270	43	32	43	11	2.19
88MRD24*	751778	6968310	515	-60	270	195	128	140.5	12.5	2.18
86MORC35*	751770	6968308	515	-60	270	43	16	20	4	14.6

^{*}Historical Drill Intercept

	Significant Drilling Results from Montague										
HoleID	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)	
GDD013	750750	6966950	514	-90	000	363.5	163	165	2.0	6.0	
GDD014	750700	6966970	514	-90	000	250	174	176	5.5	1.4	
GDD015	750795	6966950	514	-90	000	170	121	125.5	4.5	10.2	
GRC0342	750820	6966910	504	-90	0	227	89	98	9	4.24	
GRC0357	750820	6966941	503	-90	0	130	104	109	5	11.49	
GRC0358	750820	6966941	503	-60	90	111	75	77	2	5.8	
GRC0359	750857	6966840	500	-90	0	124	86	88	2	1.58	
GRC0360	750857	6966840	500	-60	90	105	64	67	3	2.16	
GRC0361	750843	6966882	502	-90	0	124	78	85	7	1.56	
GRC0362	750843	6966882	502	-60	90	99	53	58	5	0.9	
GRC0365	750770	6967020	505.4	-90	0	198	-	-	-	-	
GRC0366	750720	6966990	506.4	-90	0	198	154	155	1	8.81	
GRC0367	750720	6966930	515.2	-90	0	183	-	-	-	-	
GRC0368	750770	6966880	513.8	-90	0	180	-	-	-	-	
GRC0369	750770	6966970	513.1	-90	0	180	139	140	1	3.12	
GRC0370	750770	6966940	513.7	-90	0	180	139	145	6	45.5	
							(Includes)	3	90		
GRC0371	750770	6966910	513.8	-90	0	165	141	142	1	6.22	
GRC0372	750820	6966980	508.8	-60	090	108	68	69	1	8.87	
GRC0373	750819	6966980	508.8	-90	0	121	99	100	1	3.13	
			Monta	gue –	High (Grade Extens	ions				
Hole ID	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)	
GRC379	750,920	6,966,740	505	-90	000	118				NSA	
GRC380	750,850	6,966,800	504	-90	000	119	72	81	9	5.2	
GRC381	750,820	6,967,080	508	-90	000	98	85	87	2	0.8	
GDD016	750,795	6,966,920	511	-90	000	162.5	124.9	127.4	2	1.1	
GRC325*	750,854	6,966,860	511	-90	000	120	70	75	5	4.8	
GRC357*	750,820	6,966,941	503	-90	000	130	104	109	5	11.5	
GRC342*	750,820	6,966,910	504	-90	000	227	89	98	9	4.24	

^{*}previously reported drilling result

	Significant Drilling Results from Victory Creek									
HoleJD	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)
VCRC0001	747460	6967953	510	-90	0	48	29	36	7	5
GRC182	748192	6968152	510	-60	90	76	30	32	2	2.8
GRC200	748117	6968152	510	-60	90	171	37	38	1	4.7
GRC277	748014	6968199	510	-60	90	208	62	65	3	1.2
VRC003	747819	6968138	510	-60	48	84	20	24	4	7.1
VRC017	747827	6968003	510	-60	48	84	47	48	1	4.1
VRC023	747459	6968030	510	-60	135	84	60	63	3	2.6
VRC025	747430	6968058	510	-60	135	84	67	80	13	1.8
VRC027	747381	6968022	510	-60	317	84	50	53	3	4
VRC031	747466	6967938	510	-60	317	78	31	36	5	7
VRC033	747495	6967910	510	-60	317	88	38	39	1	3
VRC034	747445	6967959	510	-60	135	78	33	38	5	3.4
VRC035	747445	6967903	510	-60	317	78	30	33	3	1.1
VRC048	747403	6967945	510	-60	317	78	30	34	4	4
VRC054	747599	6968172	510	-60	135	78	62	65	3	1.4
VRC065	747488	6967964	510	-60	90	81	42	45	3	1.5
VRC068	747448	6967964	510	-60	90	81	40	46	6	6.3
VRC072	747368	6967965	510	-60	90	79	26	27	1	22.5
VRC075	747800	6968120	510	-60	270	81	29	35	6	2.9
VRC078	747860	6968119	510	-60	270	81	24	30	6	1.3

APPENDIX (3): SIGNIFICANT DRILLING INTERSECTIONS

JORC Code, 2012 Edition Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 DIAMOND Drilling—Core was drilled by DDH 1. Gateway staff collected the core from the rig and took the core back to the core yard where the core was cleaned, reassembled and marked up with metre marks for logging by Gateway geologists. The geologist marked up the core for sampling and the HQ and NQ core was half cut in half using a corewise automatic core saw. Sample lengths were dominantly 1m in length, but where geological contacts were present, the core was sampled to this contact creating a sample less or greater than 1 metre. Minimum sample length is 0.2m and maximum sample length is 1.2m. Duplicates were taken by taking a separate pulp in the preparation stage at the lab at a 1:50 ratio RC drilling - 2kg - 3kg samples were split from dry 1m bulk samples. The sample was initially collected from the cyclone in an inline collection box with independent upper and lower shutters. Once the metre was completed, the drill bit was lifted off the bottom of the hole, to create a gap between samples, when the gap of air came into the collection box the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, and the sample was dropped under gravity thorough a Metzke cone splitter. Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. A second 2kg-3kg sample was collected at the same time the original sample. This sample has been stored on site. These duplicate samples have been retained for follow up analysis and test work. The bulk sample of the main ore zone was discharged from the cyclone directly into green bags. The bulk sample from the waste was collected in wheelbarrows and dumped into neat piles on the ground. During the sample collection process, the cone split, original and duplicate calico samples and the reject green bag samples were weighed to test for bias's and sample recoveries. The majority of the check work was undertaken through

Criteria	JORC Code explanation	Commentary
		accessed through verifying historical company reports and/or available digital databases. Diamond Drilling: HQ3 and NQ core drilled in fresh rock. Core orientated and
		mineralised noted and marked for cutting. Sample lengths sampled on 0.5 to 2m intervals and cut to half-core sub-sample collected.
		Samples were analysed for Au by AAS technique with results greater than 0.5ppm Au reassayed by Fire Assay. Assays >3g/t Au re-assayed by Screen Fire Assay. This methodology was applied to account for a recognized coarse gold component within the mineralised zones.
		RC Drilling: Samples were collected on 1m intervals, riffle split and 5m composite samples prepared for assay. Re-assays were undertaken on selected 1m samples.
		Samples sent to ALS in Perth, for 3kg pulverisation for production of homogenous 50g or 30g charge for Au fire assay, multi elements also analysed
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 DIAMOND - was drilled by DDH1 (Perth) using a Boart Longyear KWL 1600H drill rig. RC - Challenge Drilling drill rig was used. The rig consisted of a Schramm truck mounted RC rig with 1150cfm x 350psi on board compressor, an Airsearch 1800cfm x 900psi on board Booster, and a truck mounted Sullair 900cfm x 350psi auxiliary compressor.
		Historical Drilling:
		All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.
		Diamond Drilling: RC percussion or HQ3 pre-collars were drilled to fresh rock. NQ core drilled for remainder of holes. No details available on drilling rig specifications.
		RC Drilling: RC percussion drilled as pre-collars to fresh rock. No details available on drilling rig specifications.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 DIAMOND – the holes were rough cored from surface through the broken oxide zone which is well understood from previous drilling. The remnant core was examined by Gateway Geologists and then discarded. Once coherent coring was established the drill sample recovery was measured routinely by Gateway Geologists. Overall recovery was excellent. During the RC sample collection process, the cone split, original and duplicate calico
		samples and the reject green bag samples were weighed to test for bias's and sample recoveries. The majority of the check work was undertaken through the main ore zones. From this process showed that the majority of ore grade samples had recoveries greater than 80% Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney.

Criteria	JORC Code explanation	Commentary
		 At the end of each metre the bit was lifted off the bottom to separate each metre drilled. The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. From the collection of recovery data, no identifiable bias exists. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital
		databases. Diamond Drilling: Recoveries in fresh rock are recorded as being satisfactory and that no inherent bias has been introduced from drilling or sampling techniques.
		RC Drilling: There are no records available that capture information on drilling recoveries. Typically a minimum 3kg sample was provided to the laboratory for assay. Samples considered fit for purpose.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Diamond core was put into core trays on the drill rig and then cleaned, reassembled and marked up with metre marks for logging by Gateway geologists Reverse circulation chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chips were visually inspected and logged to record lithology, weathering, alteration, mineralisation, veining and structure. Data on rock type, deformation, colour, structure, alteration, veining, mineralisation and oxidation state were recorded. Logging is both qualitative and quantitative or semi quantitative in nature.
		Historical Drilling:
		All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.
		Reverse circulation and Aircore chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chips were visually inspected and logged to record lithology, weathering, alteration, mineralisation, veining and structure.
		Records of samples being wet or dry were taken.
		Diamond core was presented and stored in industry standard core boxes. The core was orientated and core loss noted.
		Data on rocktype, deformation, colour, structure, alteration, veining, mineralisation and oxidation state were recorded. RQD, magnetic susceptibility and core recoveries were recorded.
		Logging is considered both qualitative and quantitative or semi-quantitative in nature.
		The logging information is considered to be fit for purpose.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	All diamond core was cut based on geological boundaries or to a maximum length of

Criteria	JORC Code explanation	Commentary
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 1m. Quarter core was sampled from each interval and retained in calico bags. Core is then securely stored in a Perth warehouse. Samples were split from dry, 1m bulk sample via a cone splitter directly from the cyclone. The QC procedure adopted through the process includes: Weighing both calicos and reject sample to determine sample recovery and check for sampling bias. Field duplicates were collected at a rate of 1:25, these were collected during RC drilling at the same time as the primary sample. OREAS certified material (CRM) was inserted at a rate of 1:25, the grade ranges of the CRM's were selected based on grade populations. 2-3kgs of sample was submitted to the laboratory. Samples oven dried at 10gdegC then pulverized in LM5 mills to 85% passing 75micron. All samples were analysed for Au using the Au-AA26 technique which is a 50g lead collection fire assay. For Diamond core and RC samples the sample preparation technique is appropriate and is standard industry practice for a gold deposit. Quality control for maximising representivity of samples included sample weights, insertion of field duplicates and laboratory duplicates. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. RC samples were split using a riffle splitter. 1m samples were collected and 5m composites prepared for assay, Re-assays were undertaken on selected 1m samples. Typically 3kg samples were submitted to the assay laboratory. Only minor numbers of samples are recorded as being wet. QA/QC data is not currently available. Sampling processes are considered fit for purpose. Diamond core was presented and stored in industry standard core boxes. The core was orientated and core loss noted. Once logged the core was marke

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Drill samples were submitted to ALS (Perth). All samples were analysed by a 50g fire assay (AAS finish) which is a total assay. Ore zones were also submitted for accelerated cyanide leachwell test work. This is involves a 2000g leach with AAS finish. Field duplicates were collected at a rate of 1:25 with CRM's inserted at a rate of 1:25 also. The grade ranges of the CRM's were selected based on grade populations. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. All samples were assayed at either Analabs or ALS in Perth. Samples were analysed for Au by AAS technique with results greater than 0.5ppm Au reassayed by Fire Assay. Assays >3g/t Au re-assayed by Screen Fire Assay. This methodology was applied to account for a recognized coarse gold component within the mineralised zones. QA/QC data is not currently available. Sampling processes are considered fit for purpose.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Drilling results are cross checked by company geologists and consulting geologists (OMNI GeoX Pty Ltd.) Data is recorded digitally at the project within standard industry software, assay results received digitally also. All data is stored within a suitable database. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. Logging and sampling were recorded directly into a Stratalog T500 digital logging unit. All drilling information is currently stored in a Gateway Access database. All information has been plotted on section and in plan to match against neighbouring holes and determine likely validity of the data QA/QC data is not currently available. Sampling and assay data are considered fit for purpose.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole location is initially recorded with a handheld Garmin GPS (+/- 3m) and will eventually be recorded by Digital GPs (+/-1cm). A Reflex EZ North Seeking Gyro is

Criteria	JORC Code explanation	Commentary	
	Specification of the grid system used.	used to record the deviation of the drill holes (+/- 1deg)	
	Quality and adequacy of topographic control.	Historical Drilling:	
		All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.	
		A truncated AMG grid was established across the project area and hole collars were measure from fixed survey pegs. These collar locations have been validated using detailed aerial photography.	
		Downhole surveys were undertaken with an Eastman single shot camera on intervals ranging from 30 to 50m.	
		Location data is considered fit for purpose.	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore 	 Refer to tables within text for data spacing. Holes drilled within this program in combination with the historical holes and their related samples are deemed to be appropriate for resource estimation. 	
	Whether sample compositing has been applied.	Historical Drilling:	
		All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.	
		Please See Table 1 for Results	
		Drilling at the Whistler, Montague and Caledonian targets have been drill tested in various spacings. Typically immediately below the historical open pit mines the spacing is a nominal 25 x 25m and as the drilling moves deeper and along strike expands to 25 x 50m and 50 x 50m.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill lines were orientated as close to perpendicular as possible to the perceived strike of the mineralized structure. Drilling at Whistler intercepts mineralisation at an oblique angle to the dip (~15deg off). The orientation of drilling is suitable for the mineralisation style and orientation of mineralisation. Vertical drilling has been utilised at Montague to allow for room on the pit edge and to facilitate drilling through a low level waste dump. 	
		Historical Drilling:	
		All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.	
		Drilling directions at Whistler, Montague and Caledonian targets have been drilled	

Criteria	JORC Code explanation	Commentary
		perpendicular to strike (90-270) and in the across dip direction in most cases.
		The majority of holes have been drilled at a 60 to 90 degree dip and intersected the mineralisation at an appropriate angle.
		In some cases reverse angled holes have been completed to test for short range controls on the gold mineralisation.
		The orientation of the drilling is suitable for the mineralisation style and orientation of the mineralisation at the Whistler, Montague and Caledonian Targets.
Sample security	The measures taken to ensure sample security.	Calico samples are sealed into green/poly weave bags and cable tied. These are then sealed in bulka bags and transported to the laboratory in Perth by company staff or trusted contractors or established freight companies.
		Historical Drilling:
		All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.
		No information.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Drilling results are cross checked by company geologists and consulting geologists (OMNI GeoX Pty Ltd.)
		Historical Drilling:
		All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Whistler gold deposit is situated on Mining Lease M57/217 which is held 100% by Gateway Mining Ltd. The Montague Gold Deposit is situated on Mining Lease M57/98 which is held 100% by Gateway Mining Ltd.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Whistler open cut was mined from November 1990 (Polaris Pacific NL) and ore was toll treated through the Herald mill. Little attention was paid to mineralisation other than gold. Montague open cut was mined from 1989-1990 (Herald Resource Ltd) and ore was toll treated through the Herald mill. Little attention was paid to mineralisation other than gold.
Geology	Deposit type, geological setting and style of mineralisation.	 The Whistler orebody is a N-S shear zone hosted at the contact between basalt (east) and granodiorite (west) that contains an array of NNE-striking quartz veins arranged en echelon. The Whistler orebody is hosted in a flat lying (30-45 degrees) N-S trending shear zone hosted by basalt on the margin of a large granodiorite intrusion. The mineralisation is typically within a defined shear zone with quartz-veining and strong biotite-sericite alteration. Minor sulphides are generally present.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Exploration drill results are contained with Table 1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	The minimum grade truncation was set at 1g/t. There was no maximum grade truncation given to these set of exploration results.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Drill lines were orientated perpendicular to the perceived strike of the mineralized structure. Drilling at Whistler intercepts mineralisation at an oblique angle to the dip (~15deg off). The orientation of drilling is suitable for the mineralisation style and orientation of mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and sections are included in the announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Bulk density and leachwell analysis are ongoing and will be reported in due course
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A first pass inferred resource on the results obtained to date at Whistler and Montague. Deeper diamond drilling to fully assess the underground potential/extension of the known high grade mineralised core. RC drilling to test for strike extensions.

+Rule 5.5

Appendix 5B

Mining exploration entity and oil and gas exploration entity quarterly report

Introduced 01/07/96 Origin Appendix 8 Amended 01/07/97, 01/07/98, 30/09/01, 01/06/10, 17/12/10, 01/05/13, 01/09/16

Name of entity

Gateway Mining Limited				
ABN	Quarter ended ("current quarter")			
31 008 402 391	30 th June 2019			

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers	20	95
1.2	Payments for		
	(a) exploration & evaluation	(605)	(2,564)
	(b) development		
	(c) production		
	(d) staff costs	(46)	(311)
	(e) administration and corporate costs	(187)	(631)
1.3	Dividends received (see note 3)		
1.4	Interest received	3	9
1.5	Interest and other costs of finance paid		
1.6	Income taxes paid		
1.7	Research and development refunds	377	377
1.8	Other (provide details if material)		
1.9	Net cash from / (used in) operating activities	(438)	(3,025)

2.	Cash flows from investing activities	
2.1	Payments to acquire:	
	(a) property, plant and equipment	
	(b) tenements (see item 10)	
	(c) investments	
	(d) other non-current assets	

⁺ See chapter 19 for defined terms

Consolidated statement of cash flows		Current quarter \$A'000	Year to date \$A'000
2.2	Proceeds from the disposal of:		
	(a) property, plant and equipment		
	(b) tenements (see item 10)		
	(c) investments		
	(d) other non-current assets		
2.3	Cash flows from loans to other entities		
2.4	Dividends received (see note 3)		
2.5	Other (provide details if material)		
2.6	Net cash from / (used in) investing activities	-	-

3.	Cash flows from financing activities		
3.1	Proceeds from issues of shares	1,827	3,327
3.2	Proceeds from issue of convertible notes		
3.3	Proceeds from exercise of share options		
3.4	Transaction costs related to issues of shares, convertible notes or options	(100)	(182)
3.5	Proceeds from borrowings		
3.6	Repayment of borrowings		
3.7	Transaction costs related to loans and borrowings		
3.8	Dividends paid		
3.9	Other (advance received from directors)	113	113
3.10	Net cash from / (used in) financing activities	1,840	3,258

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	443	1,612
4.2	Net cash from / (used in) operating activities (item 1.9 above)	(438)	(3,025)
4.3	Net cash from / (used in) investing activities (item 2.6 above)	-	-
4.4	Net cash from / (used in) financing activities (item 3.10 above)	1,840	3,258
4.5	Effect of movement in exchange rates on cash held		
4.6	Cash and cash equivalents at end of period	1,845	1,845

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	1,845	443
5.2	Call deposits		
5.3	Bank overdrafts		
5.4	Other (provide details)		
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	1,845	443

6.	Payments to directors of the entity and their associates	Current quarter \$A'000	
6.1	Aggregate amount of payments to these parties included in item 1.2	80	
6.2	Aggregate amount of cash flow from loans to these parties included in item 2.3	Nil	
6.3	Include below any explanation necessary to understand the transactions included in items 6.1 and 6.2		

Director's fees			

7. Payments to related entities of the entity and their associates 7.1 Aggregate amount of payments to these parties included in item 1.2 7.2 Aggregate amount of cash flow from loans to these parties included in item 2.3 Current quarter \$A'000 Nil

7.3 Include below any explanation necessary to understand the transactions included in items 7.1 and 7.2

Omni GeoX Pty Ltd for geological services; Enrizen Financial Group Pty Ltd for corporate services.

8.	Financing facilities available Add notes as necessary for an understanding of the position	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
8.1	Loan facilities		
8.2	Credit standby arrangements		
8.3	Other (please specify)		
8.4	Include below a description of each facility above, including the lender, interest rate and whether it is secured or unsecured. If any additional facilities have been entered into or are proposed to be entered into after quarter end, include details of those facilities as well.		

9.	Estimated cash outflows for next quarter	\$A'000
9.1	Exploration and evaluation	450
9.2	Development	
9.3	Production	
9.4	Staff costs	50
9.5	Administration and corporate costs	150
9.6	Other (provide details if material)	
9.7	Total estimated cash outflows	650

10.	Changes in tenements (items 2.1(b) and 2.2(b) above)	Tenement reference and location	Nature of interest	Interest at beginning of quarter	Interest at end of quarter
10.1	Interests in mining tenements and petroleum tenements lapsed, relinquished or reduced	Nil			
10.2	Interests in mining tenements and petroleum tenements acquired or increased	Nil			

Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Sign here:	SIGNATURE ON FILE (Company secretary)	Date: 31 July 2019
Print name:	Kar Chua	

Notes

- The quarterly report provides a basis for informing the market how the entity's activities have been financed for the past quarter and the effect on its cash position. An entity that wishes to disclose additional information is encouraged to do so, in a note or notes included in or attached to this report.
- 2. If this quarterly report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.