

31 January 2014

Quarterly Activities Report

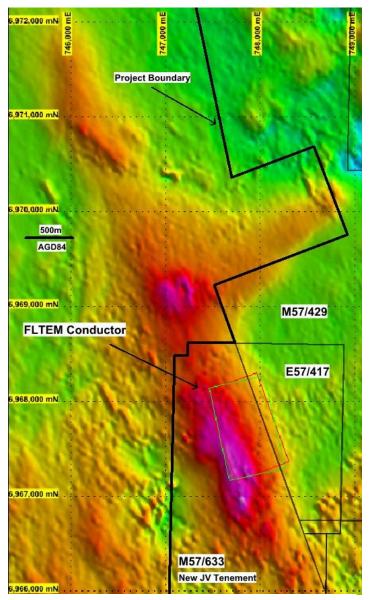
Highlights:

- Completion of RC drill program intersection of promising Ni-Cu-PGE massive sulphides
- FLTEM survey locates excellent conductor proximal to sulphide intersection
- Analysis of historical data shows prospectvity for Ni-Cu-PGE style mineralisation in the region
- Drill programs to commence soon

Gateway Mining Ltd ("Gateway" or "the Company") has continued to be very active exploring its tenement package in Gidgee, WA. The results of the last quarter provide a lot of encouragement for the Company's upcoming drill programs.

The Company completed its first drill program over the joint venture tenement with Panoramic Resources Ltd during the last quarter. The results intersected very promising Ni-Cu-PGE massive sulphides in an area where this type of mineralisation was not expected. Subsequently, a Fixed Loop Electromagnetic survey was completed, which highlighted a very large and strong conductor proximal to these massive sulphides. This conductor will be drilled in February.

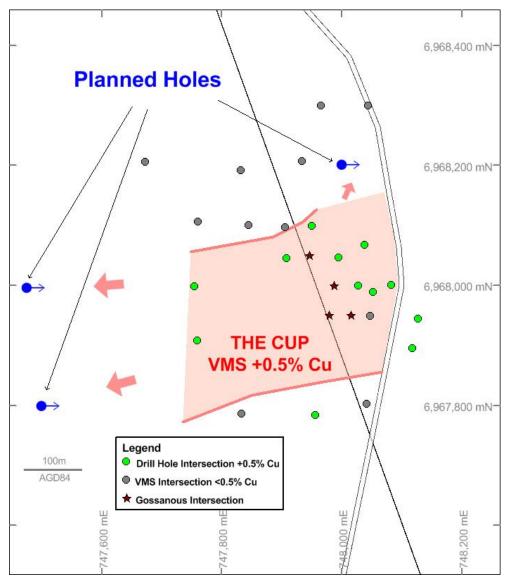
The results also showed continuation of the Volcanogenic Massive Sulphide (VMS) systems previously identified by Gateway. While the results revealed the systems are more complex than initially thought, they confirm that the VMS mineralised horizons extend westward into the joint venture tenement. Further work is required to develop a fuller understanding of the geology in order to define targets of potentially higher grade copper.


October RC Drilling Program

During the last RC program, Gateway intersected in GRC283 4m @ 1.03% Cu, 0.44% Ni, 0.32g/t Pt & 0.55g/t Pd from 137m. This is a new style of mineralisation for The Cup area. It is hosted in rocks of ultramafic geochemical composition with significant massive sulphide content. This is the first time ultramafic rocks have been intersected in this area by Gateway.

Since intersecting this new style of mineralisation, the Company moved quickly to conduct a FLTEM survey to better define the deeper conductor identified in a previous MLTEM survey. This survey outlined very strong conductivity proximal to the GRC283 intersection (further information provided below).

Importantly, the conductor appears to lie at the basal contact of an interpreted intrusion (see diagram below) which is a typical location of intrusive related Ni-Cu-PGE style mineralisation.

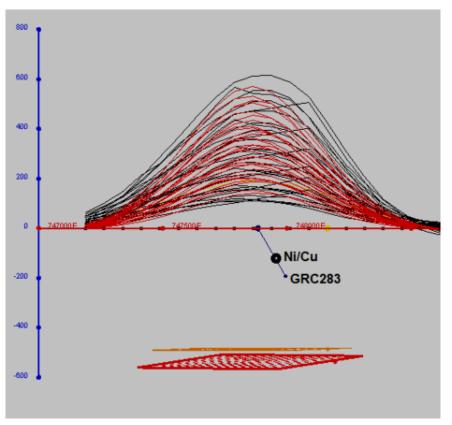


FLTEM conductor relative to interpreted intrusion

Drilling also confirmed extensions of the VMS mineralisation at The Cup. The Cup is a confirmed VMS copper system. Although the Company's understanding of the geology of the area was greatly enhanced as a result of the recent drill program, the mineralised zones are quite complex and require further work to develop a full understanding of the prospect.

The Company will test for extensions to the mineralisation, with the aim of delineating targets which could be host to higher grade copper.

Plan view of drill holes at The Cup

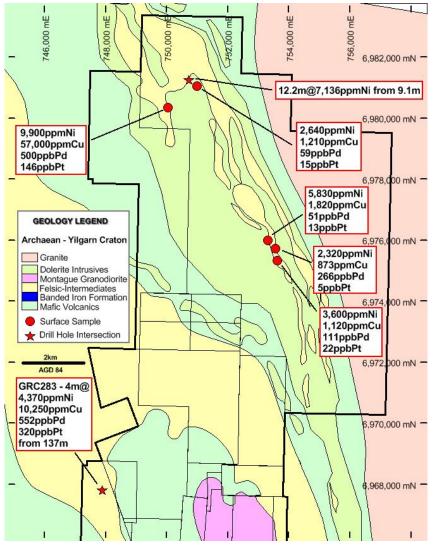

Some of the more significant results from the program include:

GRC260 – 14m @ 0.93% Cu & 2.24g/t Ag from 81m GRC255 – 7m @ 0.84% Cu from 93m (including 4m @ 1.12%Cu) GRC277 – 3m @ 67.3g/t Ag & 1.17g/t Au from 62m and 12m @ 0.53% Cu, 3.53g/t Ag & 0.12g/t Au from 69m GRC258 – 8m @ 0.76% Cu & 1.17g/t Au Cu from 92m GRC280 – 20m @ 0.51% Cu & 13.77g/t Ag from 70m

Drill hole intersections at The Cup are shown in the figure above. Intersections on the horizon above 0.5% Cu are seen to cluster together demonstrating a domain of better grade. The Company plans to test for extensions over coming drill programs.

Completion of FLTEM Survey

The Company completed an FLTEM survey over the area where Ni-Cu-PGE sulphides were intersected in GRC283. The FLTEM survey highlighted a very strong conductor beneath the intersection, which the Company believes may be related to the mineralisation in GRC283.


Ni-Cu-PGE intersection relative to subsequently identified strong FLTEM conductor

The results from the survey were excellent. The conductor has very high conductance of \sim 10,000S, which is characteristic of strongly developed massive sulphide accumulations, and extensive dimensions of 1,000m x 500m.

Analysis of historical data for Ni-Cu-PGE style mineralisation

During the quarter the Company received additional data and undertook to review all historical data of the area (particularly to the north around the Bungarra Intrusive Complex) over previous decades of exploration in light of the potential for intrusive Ni-Cu-PGE style mineralisation. The results of this work were very encouraging.

Ni-Cu gossan samples throughout broader tenement package

Historic surface gossan samples are excellent. They show very strong anomalism for Ni-Cu-PGE style mineralisation. Some of these samples are listed below and shown on the above diagram:

- 1. 9,900ppm Ni & 57,000ppm Cu
- 2. 3,600ppm Ni & 1,120ppm Cu
- 3. 2,320ppm Ni & 873ppm Cu
- 4. 5,830ppm Ni & 1,820ppm Cu
- 5. 2,640ppm Ni & 1,210ppm Cu

Importantly, all gossan samples were anomalous in Pd and Pt and the respective values are shown on the diagram.

What these historic surface samples demonstrate is that intrusive related Ni-Cu-PGE style massive sulphide mineralisation occurs in this sub-region. The nearest surface sample is only 6km away from GRC283.

Upcoming drill program

The Company will begin drilling in the week starting 10 February 2014. The focus of the drill program will be to diamond drill the strong FLTEM conductor discussed above.

While the diamond drilling is underway and an RC rig is on site, the Company considers it prudent to conduct a short Reverse Circulation (RC) program. This small program will begin testing several early stage prospects: Humdinger (a copper-molybdenum porphyry target), Apex (a Ni-Cu-PGE target) and Photo Feature (a Ni-Cu target). These were detailed in Gateway's announcement of 28 January 2014.

Strong balance sheet

Gateway continues to maintain a strong balance sheet. The Company has cash, listed securities, term deposits and debt securities totaling approximately \$2.2million.

About Gateway Mining Limited

Gateway holds approximately 150sqkm of tenements over the Gum Creek Greenstone Belt in the Yilgarn Craton, Gidgee WA (600km NE of Perth). The tenements have significant potential for Ni-Cu-PGE related mineralisation, all the hallmarks of a significant new VMS province, along with existing gold mineralisation throughout the project. The Company is well funded and plans to focus exploration efforts on The Cup area for the immediate future. Gateway also has in place an experienced management and technical team.

Table 1 – Section 1: Sampling Techniques and Data as required by the 2012 JORC Code

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drill hole intersections at The Cup include RC percussion drilling carried out by Gateway Mining Ltd 2007-2013 and Panoramic Resources Ltd aircore drilling 2011. Drill intersections at Apex prospect include aircore drilling by Legend Mining Ltd (LGCA*) in 2008 and RAB drilling by INCO during 1970 (Z8265). Surface sampling at Apex, Photo Feature and Humdinger was carried out by Gateway mining 2007-2013. The FLTEM survey at The Cup was completed with two alternate coupling loops, with one loop (CUP1) having 105 stations and the other loop (CUP2) having 42 stations.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Gateway drill hole locations are surveyed via handheld GPS and downhole surveying by eastman camera in stainless steel rods. Panoramic drill hole collars were surveyed via DGPS, Legend holes via handheld GPS and INCO holes via gridded survey and validated via aerial photographic image.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Gateway RC drilling generates 3kg of sample from 1m intervals within zones of interest and 3kg of sample from 5m intervals outside zones of interest. Samples are pulverised to produce a 30g charge for fire assay (Au), a 30g charge for ICP analysis (PGE) and a 0.25g charge for ICP- MS analysis (multiple elements). Drilling by Legend was composite sampled to 4m intervals – 5m max, INCO drilling was sampled on 5ft intervals. Sample preparation and analysis type is not known for historic drilling.
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Gateway RC drilling and Panoramic Aircore drilling are used for exploration evaluation of The Cup prospect. Legend aircore and INCO drilling are used for exploration evaluation at Apex prospect.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC recoveries are logged visually as a percentage.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Every effort was made to ensure minimal delivery of wet sample for Gateway RC drilling. The few wet samples delivered are spear sampled, the cyclone and splitter are regularly cleaned.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Recoveries are ordinarily very good and a relationship between recovery and grade has not been established. A considerable population of wet samples within mineralised zones would be required to establish this relationship.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	RC drilling has been logged to a level of detail to support mineral resource estimation, mining studies and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Gateway RC logging records lithology, weathering, colour, mineralogy, vein, structure

		(foliation), sample wetness, sample method and sample recovery estimate by volume.
	The total length and percentage of the relevant intersections logged.	All drill holes are fully logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	N/A
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Gateway 5m composite samples are scoop sampled wet or dry. 1m samples are split with a cone splitter when dry, and spear sampled when wet. 1m sampling was conducted using a scoop in dry sample for the zone of interest in GRC283. Legend composite samples were scoop sampled.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Gateway drill hole and surface samples are submitted to Australian Laboratory Services in Perth. Sample preparation follows industry best practice, the whole 3kg sample is dried, crushed and pulverised to 85% passing 75 micron to produce a homogeneous representative sub- sample for analysis. Legend samples were submitted to Ultra Trace Perth also to industry best practice (2007-2009). INCO (1970) sample methodology is not known.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Certified reference materials and/or in house laboratory controls, blanks and replicates are analysed with each batch of samples. These quality control results are reported along with sample values. The company also sends certified reference materials sourced from Geostats Pty Ltd at a nominal 1/50 samples.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field duplicates of Gateway 1m drill hole samples are generated from a cone splitter as nominated within mineralised zones.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate to give an accurate indication of mineralisation of this nature.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Gateway sampling has three main analytical techniques. 1) For gold only 30g fire assay - tota recovery and AAS analysis. 2) PGE elements 30g fire assay – total recovery and ICP analysis. 3) Other elements 0.25g four acid digestion – near full recovery and ICP-MS analysis.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	For FLTEM Survey: 800 x 300 m loop with five lines 1,500m long and station spacing of 75m totalling 105 stations (CUP1) and 800 x 300m loop with two lines 1500m long and station spacing of 75m totalling 42 stations (CUP2). Time base 1 sec (.25Hz) B- Field Landtem sensor, Smartem 24 Receiver.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Gateway internal certified reference materials and field duplicates sent for analysis were returned within acceptable limits of accuracy. Legend used internal standards and duplicates.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel.	Both the Exploration Manager and Head Geologist have verified significant intersections
	The use of twinned holes.	No twinned holes have been drilled to date.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Gateway primary data was entered into a standard Excel template, loaded and stored in a MS Access relational database, further data validation in Micromine software and visual

		validation using Micromine plot generations. Legend drill hole and surface sample data was acquired in MS Access database format and the INCO drilling is included within.
	Discuss any adjustment to assay data.	No adjustments have been made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Gateway drill hole collars were located by handheld GPS. Expected accuracy is +/-5m for easting and northing and +/-10m for elevation coordinates. Legend DGPS collars are to a higher degree of accuracy.
	Specification of the grid system used.	AGD84 (AMG), zone50. This grid system is best suited to minimise ground disturbance by facilitating reuse of previous line clearing.
	Quality and adequacy of topographic control.	500mRL is applied at The Cup where there is very flat terrain and GPS accuracy is too inaccurate, +/-10m. 540mRL is applied at Apex.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Minimum drill spacing to date at The Cup prospect is to a nominal 50mN and 40mE.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	N/A - Neither a Mineral Resource or an Ore Reserve estimation has been applied.
	Whether sample compositing has been applied.	No compositing has been applied.

Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Current interpretation of geological structure at The Cup Cu-Ag zone supports orientation of drilling and sampling as highly favourable and almost oblique to geological mineralised structure. Orientation of The Cup Ni-Cu-PGE and Apex mineralisation is not known.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No bias is known.

Mining to trusted subcontracting companies including JPS contracting to Nexus Sadleir Transport who deliver samples to Australian Laboratory Services.

Audits or reviews	The results of any audits or reviews of sampling techniques	No audits or reviews have been carried out to
	and data.	date.

Table 1 – Section 2: Reporting of Exploration Results as required by the 2012 JORC Code

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Cup prospect straddles E57/417 and M57/633. Tenement M57/633 is subject to a Joint Venture with Panoramic Resources Ltd (refer Gateway announcement 12 August 2013 for details). E57/417 is 100% Gateway owned. Apex and Photo Feature prospects are within tenement E57/706 – Gateway (100%).

	Drilling near Humdinger prospect is to occur within E57/793- Gateway (75%) and Red 5 Ltd (25%).
The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenements are in good standing

Exploration done by	Acknowledgment and appraisal of exploration by other	Gold was first discovered in the district in1926
other parties	parties.	and historically the Gum Creek Greenstone Belt
		has produced 1.5 million ounces Au. Over the
		project area base metal exploration was first
		carried out in the 70's and 80's by INCO and
		CRA. Historic mining of approximately
		100,000oz of gold occurred along the Airport
		Trend on the western flank of the Montague
		Granodiorite by Herald Resources during the
		80's where little attention was paid to
		mineralisation other than gold.
		At The Cup prospect, gold was explored for by
		Arimco from 1983 and by Abelle from 1999
		with little attention given to base metals. Base
		metal VMS mineralisation was discovered by
		Gateway Mining in 2006 close to the tenement
		boundary of E57/417, exploration for VMS
		mineralisation then became the focus for
		Gateway. Panoramic Resources Ltd acquired a
		package of Gidgee tenements in 2011 when it
		purchased the Gidgee Gold Project. One of these
		tenements included M57/633, the tenement for
		which a Joint Venture was entered with Gateway
		in August 2013. Recent ensuing exploration
		intersected intrusion related Cu-Ni-PGE
		mineralisation for which evaluation is in early
		stages.
		Apex and Photo Feature prospects are in the
		northern section of the project where the
		Bungarra Igneous Complex is located
		Exploration was carried out by Legend Mining
		Ltd from 2007 to 2009 with focus on intrusive
		related Ni-Cu-PGE style mineralisation.

Geology	Deposit type, geological setting and style of mineralisation.	The Gidgee South Project is situated within the
		Gum Creek Greenstone Belt of the Achaean
		Yilgarn Craton and locally includes basalts, felsic
		volcaniclastics, the Montague Granodiorite
		intrusion and mafic-ultramafic intrusive rocks of
		the Bungarra Igneous Complex.
		Mineralisation styles within the project include:
		1) VMS Cu-Zn-Ag, occurs widely across the
		project with up to 30km of prospective strike. 2)
		Mafic/ultramafic intrusion related Cu-Ni-PGE,
		occurs at The Cup and within the northern portion
		of the project within the Bungarra Igneous
		Complex. 3) Porphyry Au-Mo-Cu-Pb (+/-) W-
		Sn-Zn related to felsic/intermediate intrusions
		such as the Montague Granodiorite. 4) Lode Au,
		a prime example occurs at the Gidgee Gold
		Operation that is centred just 6.5km west from
		the NW project boundary and has past production
		of approximately one million ounces.

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Refer to tables below.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assays have been length weighted. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	N/A
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	N/A, no metal equivalent is reported.

Relationship between	These relationships are particularly important in the	Down hole lengths are close approximations of
mineralisation widths	reporting of Exploration Results.	true width for The Cup Cu-Ag mineralised
and intercept lengths	If the geometry of the mineralisation with respect to the drill	intercepts. Relationship between downhole depth
	hole angle is known, its nature should be reported. If it is	and true width is not known for GRC283 Ni-Cu-
	not known and only the down hole lengths are reported,	PGE intersection at The Cup or for Apex drill
	there should be a clear statement to this effect (eg 'down	hole intersections.
	hole length, true width not known').	

Diagrams Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included above, also for The Cup refer to announcement on 29 November 2013 and 2 December 2013
--	--

Balanced Reporting	Where comprehensive reporting of all Exploration Results is	Only one hole has been drilled into The Cup Ni-
	not practicable, representative reporting of both low and	Cu-PGE prospect. The prospect is in a very early
	high grades and/or widths should be practiced to avoid	stage of exploration. Refer to announcement on
	misleading reporting of Exploration Results.	29 November 2013 and 2 December 2013 for
		results on The Cup Cu-Ag zone. For Apex see
		body of report.

Other substantive	Other exploration data, if meaningful and material, should	Refer to body of announcement.
exploration data	be reported including (but not limited to): geological	
	observations; geophysical survey results; geochemical	
	survey results; bulk samples – size and method of treatment;	
	metallurgical test results; bulk density, groundwater,	
	geotechnical and rock characteristics; potential deleterious	
	or contaminating substances.	

Further work	The nature and scale of planned further work (eg tests for	Refer to body of announcement.
	lateral extensions or depth extensions or large-scale step-out	
	drilling). Diagrams clearly highlighting the areas of possible	
	extensions, including the main geological interpretations and	
	future drilling areas, provided this information is not	
	commercially sensitive.	

Full details of holes at The Cup and Apex:

Hole	Zone	Total Depth	North	East	RL	Dip	Azim
AGRC007	The Cup - Cu-Ag	162	6967997	747987	500	-90	0
GAC034	The Cup - Cu-Ag	56	6968070	747970	500	-90	0
GPAC0618	The Cup - Cu-Ag	10	6968108	747859	500	-90	0
GPAC0619	The Cup - Cu-Ag	90	6968113	747839	500	-90	0
GPAC0620	The Cup - Cu-Ag	90	6968108	747759	500	-90	0
GPAC0621	The Cup - Cu-Ag	93	6968108	747659	500	-90	0
GPAC0622	The Cup - Cu-Ag	96	6968108	747559	500	-90	0
GPAC0623	The Cup - Cu-Ag	117	6968108	747459	500	-90	0
GPAC0629	The Cup - Cu-Ag	141	6967908	747459	500	-90	0
GPAC0630	The Cup - Cu-Ag	129	6967908	747559	500	-90	0
GPAC0631	The Cup - Cu-Ag	120	6967908	747659	500	-90	0
GPAC0632	The Cup - Cu-Ag	129	6967908	747759	500	-90	0
GPAC0633	The Cup - Cu-Ag	141	6967908	747859	500	-90	0
GPAC0634	The Cup - Cu-Ag	115	6967908	747959	500	-90	0
GPAC0639	The Cup - Cu-Ag	129	6967708	747459	500	-90	0
GPAC0640	The Cup - Cu-Ag	156	6967708	747559	500	-90	0
GRB2478	The Cup - Cu-Ag	32	6968000	748200	500	-60	90
GRB2479	The Cup - Cu-Ag	42	6968000	748175	500	-60	90
GRB2480	The Cup - Cu-Ag	49	6968000	748150	500	-60	90
GRB2481	The Cup - Cu-Ag	36	6968000	748125	500	-60	90
GRB2482	The Cup - Cu-Ag	26	6968000	748100	500	-60	90
GRB2483	The Cup - Cu-Ag	38	6968000	748050	500	-60	90
GRB2484	The Cup - Cu-Ag	45	6968000	748000	500	-60	90
GRB2485	The Cup - Cu-Ag	30	6968000	747950	500	-60	90
GRB2488	The Cup - Cu-Ag	50	6968200	748300	500	-60	90
GRB2489	The Cup - Cu-Ag	55	6968200	748250	500	-60	90
GRB2490	The Cup - Cu-Ag	25	6968200	748200	500	-60	90
GRB2624	The Cup - Cu-Ag	39	6967950	748100	500	-60	90
GRB2625	The Cup - Cu-Ag	35	6967950	748050	500	-60	90
GRB2626	The Cup - Cu-Ag	38	6967950	748000	500	-60	90
GRB2627	The Cup - Cu-Ag	34	6967950	747950	500	-60	90

GRB2628	The Cup - Cu-Ag	20	6967975	748152	500	-60	90
GRB2629	The Cup - Cu-Ag	30	6967975	748142	500	-60	90
GRB2630	The Cup - Cu-Ag	46	6968050	748100	500	-60	90
GRB2631	The Cup - Cu-Ag	40	6968050	748050	500	-60	90
GRB2632	The Cup - Cu-Ag	39	6968050	748000	500	-60	90
GRB2633	The Cup - Cu-Ag	41	6968050	747950	500	-60	90
GRB2634	The Cup - Cu-Ag	30	6968200	748150	500	-60	90
GRB2635	The Cup - Cu-Ag	35	6968200	748100	500	-60	90
GRB2636	The Cup - Cu-Ag	46	6968200	748050	500	-60	90
GRB2637	The Cup - Cu-Ag	28	6968200	748000	500	-60	90
GRB2638	The Cup - Cu-Ag	39	6968200	747950	500	-60	90
GRB2639	The Cup - Cu-Ag	49	6968200	747900	500	-60	90
GRB2779	The Cup - Cu-Ag	37	6967800	748200	500	-60	90
GRB2780	The Cup - Cu-Ag	42	6967800	748150	500	-60	90
GRB2781	The Cup - Cu-Ag	16	6967800	748100	500	-60	90
GRB2782	The Cup - Cu-Ag	38	6967800	748050	500	-60	90
GRB2783	The Cup - Cu-Ag	38	6967800	748000	500	-60	90
GRC182	The Cup - Cu-Ag	76	6968000	748050	500	-60	90
GRC183	The Cup - Cu-Ag	150	6967991	748010	500	-60	90
GRC197	The Cup - Cu-Ag	153	6968300	748000	500	-60	90
GRC198	The Cup - Cu-Ag	183	6968300	747900	500	-60	90
GRC199	The Cup - Cu-Ag	171	6968070	748000	500	-60	90
GRC200	The Cup - Cu-Ag	171	6968000	747975	500	-60	90
GRC201	The Cup - Cu-Ag	170	6967950	748000	500	-60	90
GRC209	The Cup - Cu-Ag	162	6968100	747950	500	-90	0
GRC226	The Cup - Cu-Ag	144	6968050	748110	500	-60	90
GRC239	The Cup - Cu-Ag	140	6968048	747954	500	-60	90
GRC240	The Cup - Cu-Ag	115	6968045	747947	500	-90	0
GRC254	The Cup - Cu-Ag	175	6968209	747909	500	-73	90
GRC255	The Cup - Cu-Ag	150	6967947	748082	500	-60	90
GRC256	The Cup - Cu-Ag	178	6967803	748041	500	-90	0
GRC257	The Cup - Cu-Ag	115	6967900	748240	500	-60	90
GRC258	The Cup - Cu-Ag	130	6967899	748073	500	-60	90
GRC259	The Cup - Cu-Ag	90	6967900	748165	500	-60	90
GRC260	The Cup - Cu-Ag	155	6968002	748041	500	-60	90
GRC274	The Cup - Cu-Ag	118	6967949	747982	500	-90	0
GRC276	The Cup - Cu-Ag	208	6968000	747874	500	-60	90
GRC277	The Cup - Cu-Ag	208	6968047	747872	500	-60	90
GRC278	The Cup - Cu-Ag	204	6968103	747781	500	-60	90
GRC279	The Cup - Cu-Ag	213	6968195	747752	500	-60	90
GRC280	The Cup - Cu-Ag	282	6968000	747713	500	-60	90

GRC281 The Cup - Cu-Ag 328 6968206 747589 500 GRC282 The Cup - Cu-Ag 148 6968102 747861 500 GRC283 PGE 223 6967797 747883 500 GRC285 The Cup - Ni-Cu-PGE 162 6980948 750734 540 LCBC001 Apex Ni-Cu-PGE 162 6980868 750813 540 LCBC003 Apex Ni-Cu-PGE 120 6981118 750484 540 LGCA175 Apex Ni-Cu-PGE 9 6981118 750408 540 LGCA176 Apex Ni-Cu-PGE 8 6981118 750508 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 750509 540 LGCA177 Apex Ni-Cu-PGE 5 6981118 750509 540 LGCA178 Apex Ni-Cu-PGE 15 6981118 750509 540 LGCA179 Apex Ni-Cu-PGE 80 698123 750635 540 90MTP015 Apex Ni-Cu-P	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60	90 90 90 55 55 300
GRC283 The Cup – Ni-Cu- PGE 223 6967797 747883 500 GRC285 The Cup - Cu-Ag 276 6967790 747802 500 LCBC001 Apex Ni-Cu-PGE 162 6980948 750734 540 LCBC002 Apex Ni-Cu-PGE 132 6980868 750813 540 LCBC003 Apex Ni-Cu-PGE 22 6981118 750484 540 LGCA175 Apex Ni-Cu-PGE 2 6981118 750485 540 LGCA176 Apex Ni-Cu-PGE 8 6981118 750458 540 LGCA176 Apex Ni-Cu-PGE 6 6981118 75059 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 75059 540 LGCA180 Apex Ni-Cu-PGE 15 6981118 750515 540 JOMTP015 Apex Ni-Cu-PGE 58 6981238 750568 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750572 540 211121 Ap	-60 2 -60 2 -59 3 -70 3 -60 3 -60 2	90 90 55 55
GRC285 The Cup - Cu-Ag 276 6967790 747802 500 LCBC001 Apex Ni-Cu-PGE 162 6980948 750734 540 LCBC002 Apex Ni-Cu-PGE 132 6980868 750813 540 LCBC003 Apex Ni-Cu-PGE 120 6981198 750484 540 LGCA175 Apex Ni-Cu-PGE 22 6981118 750485 540 LGCA176 Apex Ni-Cu-PGE 9 6981118 750458 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 750508 540 LGCA177 Apex Ni-Cu-PGE 5 6981118 75059 540 LGCA178 Apex Ni-Cu-PGE 6 6981118 750639 540 LGCA180 Apex Ni-Cu-PGE 15 6981118 75079 540 JOMTP015 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP016 Apex Ni-Cu-PGE 93 6981359 750572 540 211121 Apex Ni	-60 -59 -70 -60 3 -60 2	90 55 55
LCBC001 Apex Ni-Cu-PGE 162 6980948 750734 540 LCBC002 Apex Ni-Cu-PGE 132 6980868 750813 540 LCBC003 Apex Ni-Cu-PGE 120 6981198 750484 540 LGCA175 Apex Ni-Cu-PGE 22 6981118 750408 540 LGCA176 Apex Ni-Cu-PGE 9 6981118 750458 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 750508 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 75059 540 LGCA179 Apex Ni-Cu-PGE 5 6981118 75069 540 LGCA180 Apex Ni-Cu-PGE 15 6981118 75079 540 JGCA181 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750572 540 90MTP018 Apex Ni-Cu-PGE 24 6981023 750772 540 211121 Apex Ni-C	-59 -70 -60 3 -60 2	55 55
LCBC002 Apex Ni-Cu-PGE 132 6980868 750813 540 LCBC003 Apex Ni-Cu-PGE 120 6981198 750484 540 LGCA175 Apex Ni-Cu-PGE 22 6981118 750484 540 LGCA176 Apex Ni-Cu-PGE 9 6981118 750458 540 LGCA177 Apex Ni-Cu-PGE 8 6981118 750508 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 75059 540 LGCA179 Apex Ni-Cu-PGE 5 6981118 75069 540 LGCA180 Apex Ni-Cu-PGE 15 6981118 750709 540 LGCA181 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP015 Apex Ni-Cu-PGE 92 6981308 75058 540 90MTP016 Apex Ni-Cu-PGE 93 6981329 750572 540 211121 Apex Ni-Cu-PGE 24 6981034 750772 540 Z11122 Apex Ni-Cu-	-70 -60 -60 -60 -60 -60 -60 -60 -60 -60 -6	55
LCBC003 Apex Ni-Cu-PGE 120 6981198 750484 540 LGCA175 Apex Ni-Cu-PGE 22 6981118 750408 540 LGCA176 Apex Ni-Cu-PGE 9 6981118 750458 540 LGCA177 Apex Ni-Cu-PGE 8 6981118 750508 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 750509 540 LGCA179 Apex Ni-Cu-PGE 5 6981118 750509 540 LGCA180 Apex Ni-Cu-PGE 6 6981118 750709 540 LGCA181 Apex Ni-Cu-PGE 15 6981118 750709 540 90MTP015 Apex Ni-Cu-PGE 80 6981238 750635 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP017 Apex Ni-Cu-PGE 93 6981359 750572 540 211121 Apex Ni-Cu-PGE 24 6981034 750744 540 Z11122 Apex Ni-C	-60 3	
LGCA175 Apex Ni-Cu-PGE 22 6981118 750408 540 LGCA176 Apex Ni-Cu-PGE 9 6981118 750458 540 LGCA177 Apex Ni-Cu-PGE 8 6981118 750508 540 LGCA177 Apex Ni-Cu-PGE 6 6981118 750509 540 LGCA179 Apex Ni-Cu-PGE 5 6981118 750659 540 LGCA180 Apex Ni-Cu-PGE 6 6981118 750709 540 LGCA181 Apex Ni-Cu-PGE 15 6981118 750709 540 90MTP015 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750688 540 90MTP018 Apex Ni-Cu-PGE 93 6981359 750572 540 Z11121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750744 540 Z11122 Apex Ni-Cu-	-60 2	300
LGCA176 Apex Ni-Cu-PGE 9 6981118 750458 540 LGCA177 Apex Ni-Cu-PGE 8 6981118 750508 540 LGCA178 Apex Ni-Cu-PGE 6 6981118 750559 540 LGCA179 Apex Ni-Cu-PGE 5 6981118 750609 540 LGCA180 Apex Ni-Cu-PGE 6 6981118 750659 540 LGCA181 Apex Ni-Cu-PGE 15 6981118 750709 540 JGCA181 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP015 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP017 Apex Ni-Cu-PGE 93 6981359 750572 540 211121 Apex Ni-Cu-PGE 24 6981044 750775 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 34 6981023 750714 540 Z11124 Apex Ni-Cu-PG		
LGCA177 Apex Ni-Cu-PGE 8 6981118 750508 540 LGCA178 Apex Ni-Cu-PGE 6 6981118 750559 540 LGCA179 Apex Ni-Cu-PGE 5 6981118 750609 540 LGCA180 Apex Ni-Cu-PGE 6 6981118 750659 540 LGCA181 Apex Ni-Cu-PGE 15 6981118 750709 540 90MTP015 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750635 540 90MTP018 Apex Ni-Cu-PGE 93 6981359 750572 540 Z11121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 34 6981023 750714 540 Z11124 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11125 Apex Ni-Cu-P		270
LGCA178 Apex Ni-Cu-PGE 6 6981118 750559 540 LGCA179 Apex Ni-Cu-PGE 5 6981118 750609 540 LGCA180 Apex Ni-Cu-PGE 6 6981118 750659 540 LGCA180 Apex Ni-Cu-PGE 15 6981118 750709 540 UGCA181 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP015 Apex Ni-Cu-PGE 58 6981238 750635 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP017 Apex Ni-Cu-PGE 93 6981359 750572 540 211121 Apex Ni-Cu-PGE 24 6981034 750747 540 Z11123 Apex Ni-Cu-PGE 26 6981034 750757 540 Z11124 Apex Ni-Cu-PGE 30 6981028 750729 540 Z11124 Apex Ni-Cu-PGE 32 6981018 750714 540 Z11125 Apex Ni-Cu-	-60 2	270
LGCA179 Apex Ni-Cu-PGE 5 6981118 750609 540 LGCA180 Apex Ni-Cu-PGE 6 6981118 750659 540 LGCA181 Apex Ni-Cu-PGE 15 6981118 750709 540 90MTP015 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP016 Apex Ni-Cu-PGE 58 6981238 750635 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP017 Apex Ni-Cu-PGE 93 6981359 750572 540 211121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11124 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11125 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11126 Apex Ni-Cu	-60 2	270
LGCA180 Apex Ni-Cu-PGE 6 6981118 750659 540 LGCA181 Apex Ni-Cu-PGE 15 6981118 750709 540 90MTP015 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP016 Apex Ni-Cu-PGE 58 6981238 750635 540 90MTP017 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP018 Apex Ni-Cu-PGE 93 6981359 750572 540 211121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11124 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11125 Apex Ni-Cu-PGE 32 6981012 750685 540 Z11126 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11128 Apex Ni-Cu	-60 2	270
LGCA181 Apex Ni-Cu-PGE 15 6981118 750709 540 90MTP015 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP016 Apex Ni-Cu-PGE 58 6981238 750635 540 90MTP016 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP017 Apex Ni-Cu-PGE 92 6981308 750572 540 211121 Apex Ni-Cu-PGE 24 6981034 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11124 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11125 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11125 Apex Ni-Cu-PGE 32 6981012 750685 540 Z11126 Apex Ni-Cu-PGE 37 6981007 750671 540 Z111128 Apex Ni-C	-60 2	270
90MTP015 Apex Ni-Cu-PGE 80 6981244 750515 540 90MTP016 Apex Ni-Cu-PGE 58 6981238 750635 540 90MTP017 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP018 Apex Ni-Cu-PGE 92 6981308 750572 540 211121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 26 6981034 750744 540 Z11123 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11124 Apex Ni-Cu-PGE 32 6981018 750714 540 Z11125 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11126 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11127 Apex Ni-Cu-PGE 37 6981002 750656 540 Z11128 Apex Ni-Cu-	-60 2	270
90MTP016 Apex Ni-Cu-PGE 58 6981238 750635 540 90MTP017 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP018 Apex Ni-Cu-PGE 93 6981359 750572 540 Z11121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 26 6981034 750744 540 Z11124 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11125 Apex Ni-Cu-PGE 30 6981013 750714 540 Z11125 Apex Ni-Cu-PGE 32 6981012 750685 540 Z11126 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11127 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11128 Apex Ni-Cu-PGE 37 6981002 750656 540 Z11130 Apex Ni-Cu-PG	-60 2	270
90MTP017 Apex Ni-Cu-PGE 92 6981308 750568 540 90MTP018 Apex Ni-Cu-PGE 93 6981359 750572 540 Z11121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 24 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 26 6981034 750744 540 Z11124 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11125 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11126 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11127 Apex Ni-Cu-PGE 32 6981012 750685 540 Z11127 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11128 Apex Ni-Cu-PGE 37 6981002 750577 540 Z11129 Apex Ni-Cu-PGE 37 6981023 750577 540 Z11130 Apex Ni-Cu-PGE<	-60 2	270
90MTP018 Apex Ni-Cu-PGE 93 6981359 750572 540 Z11121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 36 6981034 750744 540 Z11123 Apex Ni-Cu-PGE 26 6981028 750729 540 Z11124 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11125 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11126 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11127 Apex Ni-Cu-PGE 40 6981012 750685 540 Z11128 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11129 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11130 Apex Ni-Cu-PGE 37 6981230 750591 540 Z11131 Apex Ni-Cu-PGE <td>-60 2</td> <td>270</td>	-60 2	270
Z11121 Apex Ni-Cu-PGE 24 6981044 750772 540 Z11122 Apex Ni-Cu-PGE 37 6981039 750757 540 Z11123 Apex Ni-Cu-PGE 26 6981034 750744 540 Z11123 Apex Ni-Cu-PGE 26 6981028 750729 540 Z11124 Apex Ni-Cu-PGE 34 6981023 750714 540 Z11125 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11126 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11127 Apex Ni-Cu-PGE 40 6981012 750685 540 Z11128 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11129 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11130 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11130 Apex Ni-Cu-PGE 37 6981236 750603 540 Z11131 Apex Ni-Cu-PGE	-60 2	270
Z11122Apex Ni-Cu-PGE376981039750757540Z11123Apex Ni-Cu-PGE266981034750744540Z11124Apex Ni-Cu-PGE346981028750729540Z11125Apex Ni-Cu-PGE306981023750714540Z11126Apex Ni-Cu-PGE326981018750700540Z11127Apex Ni-Cu-PGE326981012750685540Z11128Apex Ni-Cu-PGE376981007750671540Z11129Apex Ni-Cu-PGE406981002750656540Z11130Apex Ni-Cu-PGE386981230750577540Z11131Apex Ni-Cu-PGE376981236750591540Z11132Apex Ni-Cu-PGE306981240750603540Z11133Apex Ni-Cu-PGE436981244750617540Z11134Apex Ni-Cu-PGE526981249750630540Z11135Apex Ni-Cu-PGE526981263750651540	-60 2	270
Z11123Apex Ni-Cu-PGE266981034750744540Z11124Apex Ni-Cu-PGE346981028750729540Z11125Apex Ni-Cu-PGE306981023750714540Z11126Apex Ni-Cu-PGE326981018750700540Z11127Apex Ni-Cu-PGE326981012750685540Z11128Apex Ni-Cu-PGE406981007750671540Z11129Apex Ni-Cu-PGE406981002750656540Z11130Apex Ni-Cu-PGE386981230750577540Z11131Apex Ni-Cu-PGE376981236750591540Z11132Apex Ni-Cu-PGE306981240750603540Z11133Apex Ni-Cu-PGE436981244750617540Z11134Apex Ni-Cu-PGE526981249750630540Z11135Apex Ni-Cu-PGE526981263750651540	-90 3	340
Z11124 Apex Ni-Cu-PGE 34 6981028 750729 540 Z11125 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11126 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11127 Apex Ni-Cu-PGE 40 6981012 750685 540 Z11127 Apex Ni-Cu-PGE 40 6981007 750671 540 Z11128 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11129 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11131 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11132 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11133 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11134 Apex Ni-Cu-PGE	-90 3	340
Z11125 Apex Ni-Cu-PGE 30 6981023 750714 540 Z11126 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11126 Apex Ni-Cu-PGE 32 6981012 750685 540 Z11127 Apex Ni-Cu-PGE 40 6981012 750685 540 Z11128 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11129 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11132 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11133 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11134 Apex Ni-Cu-PGE 52 6981263 750651 540 Z11135 Apex Ni-Cu-PGE	-90 3	340
Z11126 Apex Ni-Cu-PGE 32 6981018 750700 540 Z11127 Apex Ni-Cu-PGE 40 6981012 750685 540 Z11128 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11129 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11129 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11133 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11134 Apex Ni-Cu-PGE 52 6981263 750651 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540	-90 3	340
Z11127 Apex Ni-Cu-PGE 40 6981012 750685 540 Z11128 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11129 Apex Ni-Cu-PGE 37 6981002 750656 540 Z11129 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540	-90 3	340
Z11128 Apex Ni-Cu-PGE 37 6981007 750671 540 Z11129 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750693 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540	-90 3	340
Z11129 Apex Ni-Cu-PGE 40 6981002 750656 540 Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540	-90 3	340
Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540	-90 3	340
Z11130 Apex Ni-Cu-PGE 38 6981230 750577 540 Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540		340
Z11131 Apex Ni-Cu-PGE 37 6981236 750591 540 Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540		340
Z11132 Apex Ni-Cu-PGE 30 6981240 750603 540 Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540		340
Z11133 Apex Ni-Cu-PGE 43 6981244 750617 540 Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540		340
Z11134 Apex Ni-Cu-PGE 52 6981249 750630 540 Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540		340
Z11135 Apex Ni-Cu-PGE 24 6981263 750651 540		340
		340
		250
Z11255 Apex Ni-Cu-PGE 174 6981275 750689 540		250
Z13813 Apex Ni-Cu-PGE 64 6980922 750770 540		250
Z13814 Apex Ni-Cu-PGE 82 6980946 750835 540		250
Z8257 Apex Ni-Cu-PGE 26 6981039 750434 540		340
Z8257 Apex Ni-Cu-PGE 29 6981059 750454 540 Z8258 Apex Ni-Cu-PGE 29 6981050 750462 540		340
		340
Z8259 Apex Ni-Cu-PGE 29 6981065 750495 540 Z8260 Apex Ni-Cu-PGE 21 6981071 750509 540	-90 3	340

Z8261	Apex Ni-Cu-PGE	12	6981079	750524	540	-90	340
Z8262	Apex Ni-Cu-PGE	11	6981083	750538	540	-90	340
Z8263	Apex Ni-Cu-PGE	11	6981089	750553	540	-90	340
Z8264	Apex Ni-Cu-PGE	11	6981095	750568	540	-90	340
Z8265	Apex Ni-Cu-PGE	23	6981100	750580	540	-90	340
Z8266	Apex Ni-Cu-PGE	23	6981106	750596	540	-90	340
Z8267	Apex Ni-Cu-PGE	30	6981111	750610	540	-90	340
Z8268	Apex Ni-Cu-PGE	32	6981116	750623	540	-90	340
Z8269	Apex Ni-Cu-PGE	37	6981122	750637	540	-90	340
Z8270	Apex Ni-Cu-PGE	20	6981128	750652	540	-90	340
Z8271	Apex Ni-Cu-PGE	38	6981132	750666	540	-90	340
Z8272	Apex Ni-Cu-PGE	38	6981138	750681	540	-90	340
Z8273	Apex Ni-Cu-PGE	17	6981144	750696	540	-90	340

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Scott Jarvis, a full time employee and Head Geologist at Gateway Mining, a member of the Australian Institute of Geoscientists. Mr Scott Jarvis has a minimum of 5 years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Scott Jarvis consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.